

DEPARTMENT OF THE NAVY

XML DEVELOPER’S GUIDE

Department of the Navy
Office of the Chief Information Officer
XML Work Group
29 October 2001

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 1

DONXML WG – TechTeam

Initial DON XML Developer's
Guide
This version:

DONXML Developer's Guide – 29 October 2001

Latest version:

DONXML Developer's Guide - 29 October 2001

Previous version:

Summary DON XML Developer's Guide - Final Draft 25 October 2001

Editor:

Brian Hopkins (bhopkins@logicon.com)

About This Document
This section describes the status of this document at the time of its publication. Other
documents may supersede this document. The latest status of this document series is
maintained at the NavyXML Quickplace i. Additional DON XML policy and guidance can
also be found at the NavyXML Quickplace.

This document represents an abbreviated version of the full 9 October Consensus Draft
titled, “XML Developers Guide – 9 October”, it did not go through the full consensus
process as described by DONXML TechTeam Operating Guidelines and therefore does
not represent a consensus of the entire team. This document was produced by key
individuals of the DONXML Technical Team and Steering Group in order to support the
Task Force Web (TFWeb) pilot project deadlines and milestones.

This document is an early deliverable of the overall DONXML strategy for employing
XML within the department. It is intended to provide general development guidance for
the many XML initiatives currently taking place within the DON. In the mean time, the
DONXML Work Group (WG) is in the process of developing a long-term strategy for
aligning XML implementations with the business needs of the department. This version
of the guidance is primarily written to assist developers in creating schemas that
describe XML payloads of information. It should be noted that payloads represent only
one component required for secure, reliable information exchange. Other components
include a specification for reliable messaging (including authentication, encryption,
queuing, and error handling), business service registry and repository functions, and

DONXML DONXML

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 2

transport protocols. Emerging technologies and specifications are, or will shortly,
provide XML-based solutions to many of these needs. The DONXML WG is developing
an XML Primer that will describe each of these components and bring together the
overall strategy for capitalizing on XML as a tool for enterprise interoperability.

This Developer’s Guide will be a living document, which will be updated frequently.
Future releases of this document will represent full DONXML TechTeam consensus.

Paragraphs of this document are broken into three parts.

• “Guidance” provides a concise summary of requirements and recommendations.

• “Explanation” provides a brief explanation of the reasoning behind the guidance
provided.

• “Example” provides one or more examples pertaining to the guidance.

The bulk of this document is contained in appendices that are provided as non-
normative supplementary information. The appendices should be considered to have a
“draft” status, and do not represent the consensus of the DONXML TechTeam.

This document is primarily intended for developers already familiar with XML; however it
has a comprehensive glossary, which provides good starting points for XML beginners.
Some of this document focuses on XML Schemas as a tool for interoperability. To get
the maximum benefit, it is suggested that you take the time to become familiar with the
XML Schema language. An excellent tutorial with labs is available at
http://www.xfront.com/.

We encourage developers to try the techniques recommended here and provide
feedback to the DONXML TechTeam via the editor. We will collect lessons learned and
best practices, updating and expanding this document periodically.

Table of Contents
1. REFERENCES ...3
2. INTRODUCTION ..3
3. INDICATING REQUIREMENTS AND RECOMMENDATIONS ..4
4. TERMINOLOGY...4
5. RECOMMENDED XML SPECIFICATIONS ..4
6. XML CONVENTIONS ...5
6.1. XML Components ...5

6.1.1. Standardized Case Convention...5
6.1.2. Usage of Acronyms and Abbreviations ..6
6.1.3. XML Component Naming ...7

6.2. Schema Design...9

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 3

6.2.1. Schema Languages ...9
6.2.2. Recommended Schema Development Methodology ..10
6.2.3. Capturing Metadata..12

6.3. Document Annotations...15
6.3.1. Document Versioning...15
6.3.2. Headers ..17

6.4. Attribute vs. Elements ..19
7. COE XML REGISTRY ..20
8. POINTS OF CONTACT ..21

DONXML WG Government Lead: ...21
DONXML TechTeam Lead and Editor: ..21

9. APPENDICES ..1
Appendix A – ebXML and the eBTWG...1

Description..1
ebXML Naming Rules ..2
Representation Terms ...4

Appendix B – Schema Development...1
Possible Schema Development Procedure Summary...1

Appendix C - Tools and References ...1
Tools ..1
Publications ..1
Internet ...2

Appendix D – W3C XML Recommendations ...1
Appendix E – Combined XML Schema Example...1
Appendix F – Sample XML Document Headers...1
Appendix G – Draft Glossary and Acronyms..1

Terms ...1

1. References

(a) DON CIO Interim Policy on the Use of Extensible Markup Language For Data Exchange
dtd 06 Sept 2001

2. Introduction
In August 2001 DON CIO established a DON XML Work Group (DONXML WG) to provide the leadership
and guidance to maximize the value and effectiveness of emerging XML component technologies
implemented across the DON Enterprise. At its first meeting in August 2001, the DONXML WG agreed to

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 4

produce a DON XML Developer’s Guide as a deliverable. This document serves as a reference guide for
making existing applications “XML-enabled”, and for developing future capabilities that will leverage XML
to the maximum extent possible.

Service initiatives such as Task Force Web ii(TFWeb) are implementing XML enabled applications very
quickly. This document will assist DON activities in developing XML implementations in the short term,
while lessons learned are collected.

On 6 September 2001 the Department of the Navy, Chief Information Officer signed out reference (a), an
Interim XML Policy Statement on the use of XML within the department. Copies of this policy are
available on the NavyXML QuickPlace.

3. Indicating Requirements and Recommendations
The terms "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are used throughout this document, and should
be interpreted in accordance with RFC 2119 iii.

Most items in this document should be considered as guidance rather than requirements. Specifically,
items using the terms "MUST", "MUST NOT", "REQUIRED", "SHALL", and "SHALL NOT" should be
considered as the only requirements.

DON CIO understands that short timeframe XML implementations (such as TFWeb), or pre-existing
schema that do not follow this guidance, cannot be changed immediately. Activities should read this
document and develop a migration plan to evolve their current XML implementations; additionally, the
DONXML TechTeam encourages submission of feedback as lessons learned are collected.

This document has been reviewed by TFWeb engineers and is intended to extend/compliment direction
provided by that effort. Please bring any possible inconsistencies or suggestions to the attention of the
DONXML WG and the editor.

4. Terminology
The term XML is used to describe a large range of specifications and technologies associated with XML
markup. It is critical that activities developing XML-enabled applications have a firm understanding of
basic XML terminology. Appendix G provides a list of applicable acronyms and terms.

Many schema languages have been created for expressing validation rules; however, throughout this
document the term ‘schema’ with a small ‘s’ is used generically (to include DTDs), while the term XML
Schema or just Schema (capital ‘S’) refers specifically to schemas authored in accordance with the W3C
XML Schema recommendation.

5. Recommended XML Specifications
Guidance

In general, production applications SHOULD only use software that implements W3C Final
Recommendations. Applications using software that implement W3C specifications at other stages of the
development process, or non-W3C specification, MUST do so with the following restrictions:

• W3C Proposal Recommendations – Suitable for production implementation with the
understanding that any changes in the specification, upon final recommendation, may require
recoding or retesting.

• W3C Candidate Recommendations – Suitable for pilot implementations.

• W3C Working Drafts – Suitable for prototypes and Advance Concept Demonstrations.

• Other “Final Specifications” from credible organizations (OASIS, UN/CEFACT, ebXML, ANSI,
ISO...) – Suitable for pilot and possibly production implementations. Example, SAX.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 5

• Other working/draft specifications - Suitable for prototypes and Advance Concept Demonstrations

Other guidance:

• All XML parsers, generators, validators, enabled applications, servers, databases, operating
systems, and other software acquired or used by DON activities SHALL be fully compliant with all
W3C XML specifications holding recommended status.

• Proprietary XML or XSL syntax extensions, beyond those included in W3C or DON
recommended specifications addressed in this document:

o MUST NOT be employed for any use of XML or XSL that is shared publicly with activities
outside a particular development environment.

o SHOULD only be employed privately (within a homogeneous development environment)
after careful evaluation of possible impacts on cross-platform interoperability, and
dependency on software from a single vendor. This decision MUST only be made by
government program managers.

Explanation

Appendix D provides a list of W3C recommendations and their current stage in the consensus process
(as of the date of this document). The following table provides a list of XML specifications or standards
that are not W3C products. Two categories are provided. The “Recommended” column represents widely
adopted standards that are believed to be mature and uniformly supported by software implementations.
The “Maturing” column represents other standards that the DONXML WG believes to be sufficiently
mature, however they may not be uniformly supported in existing software implementations, so caution is
advised. Future versions of this document will add additional specifications from other standards bodies
and efforts such as ebXML, OASIS, UN/CEFACT, etc.

Recommended Maturing

SAX1 1.0 and 2.0 SOAP 1.1 (W3C Note)

Application vendors often provide proprietary extensions to adopted standards. These extensions often
simplify the job of software developers, but they also make developed systems dependant on software
from a single vendor, and often they also restrict the software to being run on a single vendor’s operating
system or hardware. Government program mangers must have the final say in the decision to employ
such extensions, even when doing so inside a single system’s boundaries or within a homogeneous
development environment.

6. XML Conventions

6.1. XML Components

6.1.1. Standardized Case Convention

1 SAX is not a specification developed by a standards body or the W3C. It is an open source project
maintained by a community of developers. SAX parsers have been written for several languages, but the
only platform independent version is the Java API. A parser that is SAX compliant must implement an
equivalent to the Java API, which is provi ded at the SAX homepage.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 6

Guidance

DON developers SHALL adopt the camel case convention, as defined by the ebXML Technical
Architecture, when creating XML component names. Excerpts are provided in Appendix A.

• XML Elements and XML Schema Types use upper camel case: The first letter in the name is
upper case, as is the letter beginning each subsequent word.

• XML Attributes use lower camel case: Like upper camel case, except the first letter of the first
word is lower case.

Explanation

Major XML consortia such as OASIS, UN/CEFACT, RosettaNet, Biztalk and ebXML (see Internet
references in Appendix C) have all adopted the camel case convention for XML component naming, with
ebXML differentiating between upper and lower camel case.

Example

 <?xml version="1.0" encoding="UTF-8" ?>
 <!--
 Example of an upper camel case element and lower camel case attribute

 -->

 <UpperCamelCaseElement

 lowerCamelCaseAttribute="foo" />

6.1.2. Usage of Acronyms and Abbreviations

Guidance

DON developers SHALL follow the ebXML guidance for usage of acronyms or abbreviations in XML
component names:

• Abbreviations MUST not be used.

• Acronyms SHOULD be avoided, but when used MUST be in upper case regardless of their
position in XML component names or the camel case convention.

• Commonly used acronyms MAY be used; however, the decision to use an acronym in a
component name SHALL be made by program and functional manager rather than by application
developers

• Acronyms used in component names MUST be spelled out in the component definition that is
required to be included via schema annotations (as XML comments or inside XML Schema
annotation <xsd:documentation> elements) (see Section 6.2.3.2).

Explanation

XML documents that rely heavily on terse abbreviated component names are difficult to understand, and
subject to misinterpretation. The general consensus among the major XML standards development
consortia is that abbreviations should be avoided and acronyms used sparingly.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 7

Example:

Example of providing an element definition in a DTD. Note that the acronym DOD is spelled out in the
definition.

 <!-- DODActivityAddressCode

Definition: A 6-digit code used to uniquely identify organizations within
the Department of Defense (DOD)

-->

<!ELEMENT DODActivityAddressCode (#PCData)>

6.1.3. XML Component Naming

Guidance

The selection of XML component names MUST be a thoughtful process involving business, functional,
database, and system subject matter experts. In the schema design process, DON XML developers MAY
use temporary or dummy XML component names while consensus is being reached on more carefully
designed and defined names.

In accordance with reference (a), components registered with the COE XML registry MUST be reused if
available for XML element names and element domain restrictions.

When tags cannot be found in the registry that are suitable for reuse as XML elements, or when creating
attribute or XML Schema types, DON XML developers SHOULD create XML component names using the
ISO 11179 rules as modified by ebXML with the following caveats.

• For XML Elements: Use an ISO 11179 compliant name or a business term (section 6.1.3.1), if
appropriate, in upper camel case.

• When a business term is used in place of an ISO 11179 name, the ISO 11179 name SHOULD be
captured in the schema via XML comments or XML Schema annotations.

• For XML Attributes, use an ISO 11179 compliant name in lower camel case.

• For XML Schema Types, use an ISO 11179 compliant name in upper camel case.

When a tag is found in the COE registry, but does not conform to the camel case convention and is not
either ISO 11179 compliant or a commonly used business term, you SHOULD:

• If you are developing in Schemas:

o Create an XML Schema type from the ISO 11179 compliant data element name. You
SHOULD document the type with metadata from the COE registry such as the definition,
URL to the item, and registry identifier. Additionally you SHOULD apply any domain
restrictions to the type rather than the element.

o Create an element referencing the above-created type using the COE Registry name.

o If a business term exists, create a second element referencing the type and declare it to
be in the substitution group of the COE Registry element.

• If developing in DTDs:

o You should use the business term, if one exists, as the element name.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 8

o You MAY capture the COE Registry name and ISO 11179 element names in XML
comments.

o However, you MUST reference the COE registry tag name in the comments if you
choose to use a more appropriate business term or ISO 11179 name.

• Register newly created tags with the COE registry in the appropriate namespace.

Explanation

XML allows the flexibility to express complex names in many ways. ISO 11179 has established a draft
data element naming convention that has been adopted by ebXML for definition of data elements (see
Appendix A). It provides a uniform methodology for choosing and ordering words in complex element
names.

In summary, an ISO 11179 compliant name consists of three parts:

• An “Object Class” term, which describes the kind of thing being referred to. This Object Class
may consist of one or more words, some of which may be context terms.

For example, the ISO 11179 name ‘AcousticSignalFrequencyMeasure ’ has the “object
class” ‘Acoustic Signal.

• A “Property Term” which is the property of the thing being referred to, which may consist of one or
more words.

For example, the ISO 11179 name ‘AcousticSignalFrequencyMeasure ’ has the property
term ‘Frequency ’.

• A “Representation Term” which identifies allowable values for an element. This list is taken from
an enumerated list of allowable representation types (see appendix A).

For example, the ISO 11179 name ‘AcousticSignalFrequencyMeasure ’ has the
representation type “Representation Term” ‘Measure’.

The ebXML Technical Report, Naming Convention for Core Components provides 14 “rules” for
constructing a proper element names, some considerations are:

• When the Representation Type and the Property Term are redundant, the property term is
dropped, so ‘Item. Identification. Identifier’ becomes ‘Item. Identifier’

• When an element describes an entire class of things (e.g., not a specific property of it), the
Property Term may again be dropped, for instance ‘Documentation. Identifier’

• An aggregate component shall have a representation type of ‘details ’.

The ISO 11179 element name is converted to camel case by removing the periods, spaces and adjusting
the capitalization. Note that ISO 11179 names MAY be made directly into XML element names, but this is
not recommended. As discussed in Section 6.1.3.1 and Appendix B, the XML element name SHOULD be
an understandable business term if one naturally exists.

The excerpts provided in Appendix A were taken from draft documents that are evolving rapidly. This
information SHOULD be used as guidance only, but may prove helpful.

Example

See Appendix B and Appendix E.

6.1.3.1. Business Terms

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 9

Guidance

Developer’s SHOULD substitute business terms for ISO 11179 compliant names in element declarations
when appropriate business terms exist, however the underlying ISO 11179 name SHOULD be captured:

• By defining a fixed ‘type’ attribute in the schema referencing the ISO 11179 name. This is
primarily if developing in DTDs.

• If developing XML Schemas, ‘XML Schema types’ or substitution groups MAY be used to
reference ISO 11179 names.

• When choosing XML component names and business terms:

o Involve domain subject matter experts (operational personnel, program managers, etc)
and functional data experts (database administrators, functional data manager, data
modelers, etc.) Application developer’s MUST NOT be left on their own in the creation of
XML component names.

o Use existing definitions (from the DDDS, COE Data Emporium, MIL-STDs, or other
credible standard data element definitions).

o Business terms SHOULD NOT be created just for the sake of having one; the existence
and use of business terms SHOULD be determined by consensus of a community of
users. When a business term is not apparent or does not exist, the ISO 11179 complaint
name MAY be used as the XML component name instead.

More than one business term may exist for a single element, such as when an acronym is commonly
used instead of the full business name. If developing XML Schemas, extra synonymous business terms
MAY be created and declared in the substitution group of the primary business term.

Explanation

The ebXML deliverables define the concept of a Business Term. Business terms are commonly
recognized words that are more appropriately used as XML element names, rather than the often-esoteric
ISO 11179 conventions. Business terms improve the readability of schemas and instances, while the ISO
11179 names provide more precise and structured semantics. Both are desirable when business and
technical personnel are working together to define XML grammars for the exchange of business
information by IT systems.

This guidance may appear confusing because on one hand the creation of ISO 11179 names is
recommended, but on the other, business terms are recommended for XML element names. The
guidance is to define ISO 11179 standard names and capture those names through the use of the
Schema “type” while retaining readability through using business terms which show up in the XML
instance. Since the XML Schema is XML, those analysts interested in finding out, for instance, that
“National Stock Number” is a business term for “Federal Material Item. Identification. Details” can look
at the underlying type name of the <NationalStockNumber> tag.

Examples

See Appendix E.

6.2. Schema Design

6.2.1. Schema Languages

Guidance

Only W3C recommended languages SHALL be used within the DON, for describing documents.
Specifically, the DTD and the W3C recommended XML Schema language.

All activities developing data-oriented schema in DTD syntax SHOULD plan on migrating to XML
Schemas in their next software release.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 10

DON XML developers MAY elect to use DTD's for markup of data that is strictly document-oriented
(paragraph, chapter, appendix...), however the XML Schema language is preferred.

Explanation

The XML Schema language is the DONXML WG recommended method for creating schemas. XML
Schemas provide a rich syntax for expressing metadata. Some of its features include:

• Structures are defined, in Part 1 of the XML Schema recommendation, that allow the definition of
relational (keyed) data, and object-oriented (type inheritance) data.

• Several flexible options for defining element content models are specified.

• The language also provides for better modularity by allowing two different ways, include or import,
to reuse external Schemas.

• Part 2 of the XML Schema recommendation deals with data types. The DTD syntax allows for
expression of only a few data types, and only one data type (a string) may be assigned as
contents of an XML Element (the others are for different types of XML Attributes). XML Schemas
have dozens of built-in data types, and allow creating custom data types from combinations of the
built-in set.

• The concept of a "type" is extended beyond simple data types (string, Boolean, integer, etc.).
Complex types may be declared and named, creating stereotype content models of other XML
elements; these can then be extended, restricted, and assigned to XML elements in an "object-
oriented" fashion.

• Several means of further constraining element and attribute values are provided, including use of
Regular Expressions and predefined enumerated value lists to constrain element and attribute
values. DTD's do not allow use of regular expressions and only allow enumerated value lists for
attributes.

For activities that intend to migrate towards XML Schemas, an excellent free XML schema tutorial iv is
available from Roger Costellov ; it provides both detailed presentations and hands -on labs. Additionally, a
series of XML Schema best practice papers v i is available. These papers provide more XML Schema
development technical detail than is provided here.

6.2.2. Recommended Schema Development Methodology

Guidance

DON XML developers SHOULD adopt the practice of developing schemas based on information
exchange requirements identified via business process modeling. The information modeling process and
the XML schema creation process SHOULD be separate and distinct steps.

Business process models and corresponding document models describing information exchanged in the
processes MAY use the Unified Modeling Language (UML) if appropriate. Specifically, the UN/CEFACT
adopted Unified Modeling Methodology (UMM), based on UML, MAY be used for the process modeling.
The DONXML WG expects to evaluate the UMM for applicability to DON data domains for possible official
adoption at a later date.

Database modeling languages that are primarily oriented towards describing information via relational
(keyed) structures SHOULD NOT be used for modeling of systems and information that will primarily use
XML as the data exchange format.

Schema development SHOULD take place as a team effort with functional data experts, business
experts, program managers, and IT specialists all involved. The DONXML WG also highly encourages
collaboration between activities developing schemas within related information domains.

Conversely, schema development SHOULD NOT be solely the function of IT specialists. XML component
names in general SHOULD NOT be taken directly from underlying relational database table and column

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 11

names, unless the elements within that database have been named and created in accordance with a
DON or DOD standard that represents concurrence by an entire Community of Interest (COI).

Explanation

The single most critical factor in creating logical, reusable schemas for information exchange in XML is
the separation of the information modeling process from the schema creation process. Information should
be modeled independently of creating a schema. This allows stakeholders to focus on creating logical,
consistent representations of information, without getting distracted by the myriad of schema design
options that have nothing to do with the information. Once an agreed to information model has been
created, mapping rules from the model to a schema can be used or developed, which make schema
creation straightforward. Just as this is the most important step, it is the most often neglected.

Typically, newly trained or inexperienced developer’s begin creating schema’s on an ad hoc basis,
without the involvement of business functional experts and without a carefully crafted information model
that lends itself to expressing hierarchical, object like relationships. Often, application developer’s working
without management and functional involvement and without an appropriate model are tempted to create
XML quickly and easily from relational database table and column names. XML components produced in
this fashion have very terse, abbreviated and generally unreadable names, which are often not reusable
by other systems or concurred with by the community of users.

The result of the actions in the above paragraph is inevitably a poorly designed set of schemas with little
reusability, extensibility, or readability; this translates into rework later at additional expense.

Because most uses of XML can be conceptualized as business processes in which communities of users
share information; successful schema development should be based on analyzing, documenting, and
reaching consensus on the business processes, the parcels of information (documents) exchanged in
those processes, and the structure of a commonly understood vocabulary / grammar for creating the
documents.

The focus of XML schema and component development should be on creating XML-languages that are
understood by a community of stakeholders that engage in business processes together. In this context,
the term business process is used in a larger scope than just business-to-business transactions (B2B)
where products are bought and sold for money. Some examples:

• A supply activity wishes to make available, to its community, reference tables of code lists in an
XML format. Here the process is consumer-to-application (C2A) / application-to-consumer (A2C)
and application-to-application (A2A). A user (consumer) may request the table data via a web-
browser (C2A); the activity receives the request and returns XML that is transformed to HTML
(A2C). Also, an application may request and receive the same information in XML format via
SOAP (A2A).

• A C4ISR application wishes to make air tasking order information, from messages, available on a
publish-subscribe or broadcast basis to both operators and other C4ISR applications.

• A logistics activity wishes to store product data from an acquisition in a neutral format so that at
some future point it can be parsed and read into any database for future processing by other
activities needing it. In this case the process can be thought of as consumer-to-consumer (C2C),
because the product data that is received by the acquiring consumer should be represented in an
XML language that is understood by other consumers within the community.

Relational modeling languages, like IDEF1x, are appropriate for logical and physical enterprise data
modeling of complex systems or data warehouses that will be implemented primarily by relational data
bases. However, they are not appropriate for modeling hierarchical, object-like relationships expressed by
XML. Relational modeling focuses the efforts of the modeling exercise on the efficient representation of
data as a set of normalized entities; this simplifies the process of creating relational databases but
complicates the process of understanding the information and it often hides or neglects critical object like
aspects of the domain.

XML is an information sharing metalanguage that is inherently hierarchical, lending itself to be better
represented via graphical modeling languages, which allow capture of object relationships vice key/key-

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 12

reference relationships of normalized entities. The DONXML WG recommends that activities interested in
capitalizing on XML as an information exchange medium take the time to learn the UML. UML is rapidly
becoming the de facto industry standard for system requirements analysis, business process and
information modeling as well as software design. It provides a common language that business experts,
managers and IT specialist can use throughout all phases of a system’s implementation (requirements
discovery, analysis, business rules and workflow documentation, software design, and deployment).

Many data-modeling languages have an object orientation, however, products supporting the direct
creation of XML DTDs and/or Schema from UML are becoming available, and the UN/CEFACT Electronic
Business Transition Working Groupvii is undertaking to standardize a UML to XMLviii mapping that will
even further improve future tool support. By taking the time to create UML static structure models of
information exchange requirements, schemas can be automatically generated and updated as standards
and models evolve. This will ultimately drive down the cost of implementing XML based systems.

UML to XML tools are in their infancy. Due to lack of a standard, each tool does it differently at present.
However, by taking the time to learn UML now, and beginning the process of creating information models
in UML, DON activities will be well positioned to capitalize on future advancements.

Examples

A proposed procedure for schema development is presented in Appendix E. It is non-normative, and
provided as an example only.

6.2.3. Capturing Metadata

Guidance

DON XML developers SHOULD, within reason, capture as much metadata as possible in a schema.

The schema language chosen (DTD's or XML Schema) will impact the amount of metadata that can be
expressed, and how well applications can access the metadata for processing.

• For DTD’s, XML comments MAY be used to annotate the DTD with definitions and constraints,
which the DTD syntax doesn’t allow.

• Alternatively, for DTDs, fixed attributes MAY be used to capture the metadata.

• For XML Schema, metadata may be captured in a number of ways, as is discussed in the
following sections. The four primary ways of a capturing metadata are:

o Domain value restrictions SHOULD be captured by the use of built-in Schema data
types, the construction of custom data types, the assignment of enumerations to XML
component values, the use of regular expressions, and minimum / maximum value
constraints.

o Metadata regarding the structure and cardinality of components SHOULD be captured by
expressing element order as either a (set of) choice(s),an ordered sequence, or as
unordered. Additionally, the exact number of times an element can, or must, be repeated
MAY be specified.

o Logical relationships or relationships to existing data dictionaries and models (such as
the DDDS, ebXML core components, or COE Reference Data Sets) may be expressed
by the use of types or Schema annotations.

o An element’s definition, sources of definitions or code lists, version information, and other
metadata MAY be captured by the use of Schema annotations.

• Developer’s MAY consider the creation of a verbose semantic schema and a compact schema
strictly for document validation purpose.

• Alternatively, schema documentation and annotations MAY be provided by creating a schema
guide that is URL accessible and referenced in the header of the schema. Tools such as XML

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 13

Spy 4.x provide excellent documentation generation capabilities that can partially automate this
process.

Explanation

The schema is more than just a document structure validation tool. The XML Schema language, in
particular, has a rich feature set for capturing extra metadata that can provide:

• Data element definitions through the use of annotations

• Detailed domain value constraints

• Logical data element pedigree through the use of annotations and types.

By capturing this metadata, the schema becomes an interoperability tool, because analysts can read it
and understand what the various XML components mean and where they are derived from. Several
sources of metadata exist that can be used to derive XML components, these include:

• The COE XML Registry ix.

• The initial set of ebXML core components (see the ebXML Technical Reportsx on Core
Components)

• The DDDS

• The COE Data Emporium Reference Data Setsxi.

• Various Military Standards (MIL-STD-6040xii, 6011, 6016, etc.)

With the exception of the COE XML Registry, the sources named do not provide readily reusable XML
component names, however they do provide agreed to, reusable data element definitions.

A fully documented XML Schema may be quite verbose. Such “semantic” Schemas can provide critical
insight to analysts desiring to understand and interoperate by making use of the information in the
Schema. However, they contain much more information than is really necessary for document structure
validation. A “compact” Schema that is equivalent to the “semantic” Schema may be quickly built for
validation purposes. Having both a full “semantic” Schema and a “compact” schema may be appropriate
for activities wishing to provide extensive Schema annotations, or underlying type relationships while
having a smaller schema used strictly for validation.

A schema guide document that fully defines and explains each component in schema and the schemas
logical structure is an alternative to creating a fully documented semantic schema.

Example

Appendix E provides an example that combines several of the concepts discussed so far, including
capturing definitions and relationships.

6.2.3.1. Application Specific Metadata

Guidance

Application specific metadata (such as SQL statements or API calls) that is of interest only to a single
application SHALL NOT be included in instances or schemas.

Explanation

Including application specific metadata in an instance unnecessarily clutters the document, increases
bandwidth requirements, and is only useful to one application.

6.2.3.2. Capturing Data Element Definitions

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 14

Guidance

DON XML developers MUST, through XML comments or XML Schema annotations, document XML
element and XML Schema type definitions.

Definitions SHOULD be brief and when possible be taken from existing standard data element definitions,
such as those provided by the DDDS, ebXML Core Components, COE Reference Data Sets, or other
Military Standards (MIL-STD-6040, 6011, 6016, etc.)

Definitions SHOULD contain URL or other pointers to the definition’s source, so that analysts can look up
additional information.

Developers MAY extend the XML Schema annotation <xsd:documentation> tag by further marking up
information provided with custom tags. No standards for this yet exist; however, the general guidelines of
this document should be followed, and custom metadata tag names should follow the naming convention
of the source data dictionary.

Developers MAY elect to publish schema documentation in a separate schema guide, however if this
option is chosen, the schema must be URL accessible and referenced in the schema header.

Explanation

Many activities in the DON are rapidly developing schemas as part of initiative such as TFWeb.
Mandating that schema developers take the time to provide element and Schema type definitions will
facilitate identifying commonalities and reusable components. Furthermore, it will start to enforce some
rigor and thought in the creation of XML components, as business and technical experts come together to
create definitions for components, and map their context specific elements back to applicable DON and
DOD enterprise data standards.

Section 6.4 provides guidance on use of XML elements vice attributes. It is the DONXML WG’s
recommendation that attributes be minimized, and only used to provide supplementary metadata
necessary to understand the business value of an XML element. By adopting this convention, and that of
naming attributes in camel case according to ISO 11179 conventions, attributes will be reasonably self-
explanatory and therefore not require a definition in most cases.

Example

Appendix E provides a consolidated example of capturing data element definitions in XML Schema.

Examples Section 6.1.2 also illustrates these concepts.

6.2.3.3. Enumerations and Capturing Code Lists

Guidance

DON XML schema developer SHOULD use XML Schemas to express enumeration constraints on XML
element and attribute values, when such enumerated lists are of reasonable length and when code lists
are considered stable (not likely to change frequently).

The decision to explicitly enumerate in a schema SHOULD be made by program managers based on the
resulting size of the schema, bandwidth availability, and validation requirements.

Code lists, from which enumerations are taken, SHOULD be referenced by URI or other pointers so that
analysts can lookup code values.

Explanation

The DOD and DON frequently represent data element values as codes rather than as free text. Codes
are much easier for an application to understand and process because they are taken from a finite list of
possible values, each with agreed upon semantics. Application developers create software to execute
actions based on those code definitions and a specified set of business rules. XML can be used to
exchange data that uses codes to abbreviate information, and the schema can be used to provide

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 15

metadata about codes and their associated definitions (reference tables). Again, the way this is
accomplished depends on the schema language chosen, with XML Schemas offering the most
functionality. Capturing a reference to a list of valid codes and code values will greatly enhance
implementations and allow future analysis to identify standard code reference tables. However, for code
lists that historically change frequently, a URI pointer to the authoritative code list source is preferable.

Example

A DTD example of an element taken from the MIL-STD-6040 (USMTF) with an enumerated set of
possible values and an XML comment referencing the source of the code definitions. Note, the only way
to express an enumeration in a DTD is via an attribute. In this example, the ‘casualtyCategoryCode’
attribute is better made an XML element (see Section 6.4). Use of the XML Schema language would have
allowed expressing this enumeration as an element.

<!ELEMENT Casualty EMPTY>

<!ATTLIST Casualty casualtyCategoryCode (1 | 2 | 3 | 4) #REQUIRED>

<!-- casualtyCategoryCode

Definition: A CATEGORY DENOTING THE EFFECT OF A CASUALTY ON A UNIT'S
PRIMARY AND/OR SECONDARY MISSION AREAS.

Source: MIL-STD-6040 Baseline 2001 FFIRN 1207 FUDN 0001 -->

6.3. Document Annotations

Guidance

DON XML schema developers MUST provide carefully thought out comments within schema and
stylesheets, which provide basic information necessary to use and understand the document.

In general, Instances SHOULD NOT be documented; however, there may be situations where it is
appropriate.

Explanation

Just as it is good programming practice to document application code using a coding standard, it is
important that XML documents (instances, schemas, stylesheets) be well documented in a standard
fashion. The follow paragraphs provide some recommended guidance.

The simplest way to express annotations is through the use of XML Comments. Comments can be
inserted anywhere in an XML document after the XML Declaration.

XML Schema annotations provide a more flexible, extensible way to document Schemas as illustrated by
many examples in this document.

6.3.1. Document Versioning

Guidance

Version information for instances, schemas, and stylesheets MUST be available via document
annotations (XML comments or Schema annotations).

Explanation

Having a schema's version number available to developers in some form of annotation, both in the
schema itself and in XML instances that conform to the schema, will assist in creating implementation that
will maintain backward compatibility. Version information is also necessary for stylesheets in order to

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 16

determine which version of a stylesheet correctly transforms an instance that conforms to a version of a
schema.

6.3.1.1. Versioning DTD’s

Guidance

DTD version information SHOULD be captured as an XML comment in the header of the DTD, and MAY
be captured as a fixed attribute of the root element.

Explanation

DTD’s offer two means of documenting version number. The most straightforward is to put the DTD
version number in the header XML comment. A second, preferred method available if developing in XML
Schema is to declare a fixed schema version attribute to the XML Root Element. This will make the
version generally available to applications via an API call.

Example

<?xml version='1.0' encoding='UTF-8' ?>

<!ELEMENT root EMPTY>

<!ATTLIST root schemaVersion CDATA #FIXED '1.0' >

Providing version information in an XML comment in the header of a schema is discussed in Section
6.3.2.

6.3.1.2. Versioning XML Schemas

Guidance

XML Schemas SHOULD include the version number in the header comments and SHOULD capture the
version in an annotation to the root element of the document.

Explanation

The schema header as discussed in Section 6.3.2 provides a uniform method to capture a consistent
body of information required for a schema. However, developers can make version information more
easily available to applications through the use of the <xsd:appInfo> tag as shown in the example.

Example

Example of using Schema annotations to capture schema version information in an <xsd:appInfo> tag:

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="unqualified">

 <xsd:annotation>

 <xsd:appinfo>

 <Version>1.0</Version>

 </xsd:appinfo>

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 17

 </xsd:annotation>

 <xsd:element name="root" />

</xsd:schema>

6.3.1.3. Versioning Stylesheets

Guidance

A stylesheet MUST contain references to the name and versions of the schema that describe instances
upon which the stylesheet performs correctly.

Explanation

Tracking versions of stylesheets is very important because a new version of a stylesheet may or may not
correctly transform an instance conforming to an old version of a schema. Explicitly asserting in a
stylesheet which versions of a schema are supported will alleviate potential interoperability issues as
implementations evolve.

Example

Example of using a custom ‘schemaVersion’ attribute to express a series of schema versions, which a
new XSLT stylesheet version will correctly transform. Note: the value of the ‘schemaVersion’ attribute is
a white space separated series of Name Tokens.

 <?xml version="1.0" encoding="UTF-8" ?>
 <xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform" schemaVersion="V1.0
V1.1">

 <xsl:output method="xml" version="1.0" encoding="UTF-8"
indent="yes" />

...

 </xsl:stylesheet>

6.3.2. Headers

Guidance

To promote interoperability, every schema, stylesheet, or document MUST contain some basic metadata.

The following metadata SHOULD be provided:

• Schema:

o Schema Name

o Schema Version

o COE Namespace(s)

o Navy Functional Data Area

o URL to most current version

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 18

o For XML Schema, other Schemas imported or included to include COE Namespace,
Schema file name, and URL.

o For DTD, external entities referenced to include file name and URL

o A description of the purpose of the schema

o The name of the application or program of record that created and and/or manages the
schema

o The version of the application or program of record

o A short description of the application interface that uses the description. A URL reference
to a more detailed interface description may be provided

o The name and versions of any associated stylesheets

o Developer point of contact information to include activity, name and email

o A change history log that includes change number, version, date and change description

• Stylesheets:

o Stylesheet Name

o Stylesheet Version

o A list of schemas and XSL processors that the stylesheet have been tested against

o The COE Namespace where the stylesheet is registered

o Navy Functional Data Area of the application that makes use of the stylesheet

o URL to most current version

o Other stylesheets imported to include name and URL

o A description of the purpose and function of the stylesheet

o Application or program of record (with version) responsible for developing and
maintaining the stylesheet

o Developer point of contact information to include activity, name and email

o A change history log that includes change number, version, date and change description

• Instances:

o The name and URL of the schema that validates, and the stylesheet (if any) that correctly
transforms it, if these are not specified already as part of the instance.

Explanation

Other interested parties must be able to read a document and understand how to implement it or use
information from it. Much of the information captured in a header XML comment can be better made
available to applications through the use of fixed attributes or XML Schema annotations. However, having
a consistent set of header information in a consistent location in an XML document will promote better
configuration management and interoperability as methods for making this information available to
applications are standardized. While examples are provided that show the above information captured in
a single comment after the XML declaration, this should not discourage innovative developers from
providing the same information as Schema annotations (possible with custom markup inside a
<xsd:documentation> tag. Some information may also be captured as fixed attributes if developing in
DTDs, as illustrated by previous examples.

Example

Appendix F provides non-normative examples of document headers.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 19

6.4. Attributes vs. Elements

Guidance

The number of attributes SHOULD be carefully considered and in general used sparingly.

Attributes, if used, SHOULD provide extra metadata required to better understand the business value of
an element.

Attributes MAY be used to express code values while the content of the code (the definition) MAY be
located as the element value.

Some additional guidelines are:

• Attribute values SHOULD be short, preferably numbers or conforming to the XML Name Token
convention. Attributes with long string values SHOULD NOT be created.

• Attributes SHOULD only be used to describe information units that cannot or will not be further
extended, or subdivided.

• Information specific to a single application or database MUST NOT be expressed as values of
attributes (see Section 5.2.3.1)

• Use attributes to provide metadata that describes the entire contents of an element. If the
element has children, any attributes should be generally applicable to all the children.

Explanation

One of the key schema design decisions is whether to represent an information element as an XML
element or attribute. Once an information element has been made an attribute, it cannot be extended
further; for this reason and to promote better uniformity within the DON, the use of attributes is
recommended only sparingly.

One of the key issues with attributes is that attribute values are easily accessed with less possible white
space processing difficulty, as compared to element values, when attribute values are restricted to XML
Name Tokens or numbers; this is because an XML parser will normalize2 white space in attribute values.
Also attribute values are not as easily available via SAX; therefore processing an XML instance with a
large number of attributes and attempting to access the information via SAX may be difficult.

2 “Normalization” is accomplished by stripping all leading and trailing white space characters and reducing
all white space between non-white space characters to a single blank space (#x20).

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 20

Example

Below the code KTS (for knots) provides extra metadata required to understand the ‘business value’ of
the element – 600. It answers the question, “600 what?”

In the other examples, several ways of expressing coded values are illustrated.

<TargetVelocityMeasure measureUnitCode=”KTS”>600</
TargetVelocityMeasure>

or

<CasualtyCategoryCode value=”1”> [TRAINING ACTIVITY ONLY]
EQUIPMENT CASUALTY EXISTS BUT WILL NOT IMPACT TRAINING
WITHIN 30 DAYS. </CasualtyCategoryCode>

or

<CasualtyCategoryCode value=”1”/>

<CasualtyCategoryCode>

 <CodeContent>1</CasualtyCategoryCode>

 <CodeName>[TRAINING ACTIVITY ONLY] EQUIPMENT CASUALTY
EXISTS BUT WILL NOT IMPACT TRAINING WITHIN 30 DAYS.
</CodeName>

</CasualtyCategoryCode>

7. COE XML Registry
Guidance

Reference (a) REQUIRES all DON developers to reuse existing tags in the COE XML Registry, if
sufficient, or re-use commercial industry standard vocabularies if applicable, before developing their own.

It furthermore REQUIRES activities to register developed XML Components with the COE XML Registry.

Developers MUST familiarize themselves with this site and the associated COE Namespaces 3. Each
activity submitting a registration package to the registry is REQUIRED to do so to a specific COE
Namespace via the Namespace Manager.

Explanation

While this guidance provides many recommendations and examples of how to create more interoperable
XML, the single biggest factors affecting interoperability are visibility and reuse. A draft DOD policy
establishes the Defense Information Systems Agency (DISA) as the lead for the single DOD point of entry
for XML registry and repository functions. Currently, DISA sponsors and has made available the COE
XML Registry. The intent of the COE Registry is to provide visibility into XML components that are being
used throughout the DOD.

The DONXML WG is working with COE representatives to develop specific guidance for developers as to
which Namespace they should register with. Until this is promulgated, activities should study the
Namespace descriptions on the registry site, and contact the Namespace manager for what appears to

3 A COE Namespace and an XML Namespace are not the same thing. Be sure and understand the
difference.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001

 21

be the most appropriate place for registration. If unable to locate an appropriate Namespace, register with
the ‘To Be Determined’ (TBD) Namespace.

Pending resolution, a single application should submit its registration package to a single COE
Namespace. In the case where an application's data crosses COE Namespace boundaries, request the
COE Namespace Manager to provide guidance.

Example

An example of a COE Registration package was obtained from the COE XML Registry and is available
for download from the NavyXML Quickplace library.

8. Points of Contact
DONXML WG Government Lead:
Michael Jacobs, Jacobs.Michael@hq.navy.mil , (703) 601-3594

DONXML TechTeam Lead and Editor:
Brian Hopkins, bhopkins@logicon.com, (858) 597-7293

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix A

A - 1

9. Appendices
The following appendices are presented in draft form. They represent the understanding and opinion of
the editor, and not the consensus of the DONXML WG. They are provided, as-is, and are to be
considered non-normative. The only exceptions are the portions of the ebXML Specifications and
Technical Reports quoted in Appendix A.

Appendix A – ebXML and the eBTWG

Description
ebXML was a 18-month international project sponsored jointly by OASIS xiii and UN/CEFACTxiv that ended
in May, 2001 with the delivery of several specifications, technical reports and white papers available at
www.ebxml.org/specs . The ebXML deliverables defines an architecture with two distinct views. The
Functional Service View (FSV) defines:

• Functional capabilities;

• Business Service Interfaces;

• Protocols and Messaging Services.

In other words, the FSV consists of specifications and standards that describe how an ebXML compliant
system will physically operate to include interfaces, protocols, and registry/repository operations.

The Business Operational View (BOV) addresses:

a) The semantics of business data in transactions and associated data interchanges

b) The architecture for business transactions, including:

• Operational conventions;

• Agreements and arrangements;

• Mutual obligations and requirements.

The BOV work focused on two areas. The first focus was on creating a methodology by which business
processes can be modeled as orchestrated collaborations between business partners who exchange
payloads of information (which may be XML documents). The UMM was chosen as the modeling
methodology and a BPSS was created. Second, the BOV work focused on creating a methodology for
creating reusable components – process components which can be used to build complex business
process models, and information components which can be used to construct business documents as
payloads of ebXML messages. Some of the ebXML technical reports discuss the concept of core
components as universal, domain independent information entities defined in an XML-neutral syntax. This
is significant because the ebXML authors intentionally did not address how components (core and
domain specific) should be used to produce business documents (in XML). According to the ebXML
architecture, ebXML components exist as registered objects within an ebXML registry/repository system;
the work of defining production rules for creating XML payloads from registry entries was deferred. This
decision has drawn sharp criticism from some, however it makes sense. The ebXML strategy was to first
address how to represent information (semantics and context) independently of how it is syntactically
expressed as an XML document; consequently the ebXML technical reports on core components adopt
the ISO 11179 naming convention for creation of dictionary entries for information entities. They do
not specify how to create XML component names for schemas describing business documents containing
payloads of information.

The ebXML deliverables provide a basis for future work required to make the vision of global
interoperability a reality. OASIS and UN/CEFACT agreed to divide that work between them with OASIS
assuming responsibility for the FSV aspects while UN/CEFACT took on the BOV portion. Since that time,
UN/CEFACT has established the Electronic Business Transition Working Group (eBTWGxv),

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix A

A - 2

“...for the purpose of continuing the UN/CEFACT's role in
pioneering the development of XML standards for electronic
business. The group was formed to build on the success of the
earlier ebXML Joint Initiative between UN/CEFACT and OASIS,
which delivered its first set of specifications in May 2001.”

One of the key deliverables of this group will be a final Core Component Specification that will combine
and further refine the ebXML Core Component Technical Reportsxv i.

The rest of the information presented in this appendix is taken from the deliverables of the ebXML project.
These documents are works in progress. They may be useful in selecting data element and XML
component names; however developers must and should expect the rules and specifications presented
here to evolve rapidly.

ebXML Naming Rules
Quoted4 from the ebXML Technical Architecturexvii, Section 4.3 Design Conventions for ebXML
Specifications:

“In order to enforce a consistent capitalization and naming convention across all ebXML
specifications "Upper Camel Case" (UCC) and "Lower Camel Case" (LCC) Capitalization styles
SHALL be used. UCC style capitalizes the first character of each word and compounds the
name. LCC style capitalizes the first character of each word except the first word.

1) ebXML DTD, XML Schema and XML instance documents SHALL have the effect of producing
ebXML XML instance documents such that:

• Element names SHALL be in UCC convention (example:

<UpperCamelCaseElement/>).

• Attribute names SHALL be in LCC convention (example: <UpperCamelCaseElement
lowerCamelCaseAttribute="Whatever"/>)...

3) General rules for all names are:

• Acronyms SHOULD be avoided, but in cases where they are used, the capitalization
SHALL remain (example: XMLSignature).
• Underscore (_), periods (.) and dashes (-) MUST NOT be used (don't use:
header.manifest, stock_quote_5, commercial-transaction, use HeaderManifest, stockQuote5,
CommercialTransaction instead).”

The following is component naming rules as quoted from the technical report, Naming Convention for
Core Componentsxviii Section 5.2. They are based on the ISO 11179 Part 6 draft specification. In reading
these:

• Substitute “XML Component” for “Dictionary Entry”.

• Caveats and comments are inserted in brackets.

4 Copyright © ebXML 2001. All Rights Reserved.

“This document and translations of it MAY be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation MAY be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
MAY not be modified in any way, such as by removing the copyright notice or references to ebXML,
UN/CEFACT, or OASIS, except as required to translate it into languages other than English.”

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix A

A - 3

• Since the publication of this report, the eBTWG has changed “representation type” to
“representation term”:

Rule 1: The Dictionary Entry Name shall be unique and shall consist of Object Class, a Property
Term, and Representation Type.

Rule 2: The Object Class represents the logical data grouping (in a logical data model) to which a
data element belongs” (ISO 11179). The Object Class is the part of a core component’s
Dictionary Entry Name that represents an activity or object in a context.

An Object Class may be individual or aggregated from core components. It may be named by
using more than one word.

Rule 3: The Property Term shall represent the distinguishing characteristic of the business entity.
The Property Term shall occur naturally in the definition.

Rule 4: The Representation Type shall describe the form of the set of valid values for an
information element 5. It shall be one of the terms specified in the “list of Representation Types” as
included in this document.

Note: If the Representation Type of an entry is “code” there is often a need for an additional
entry for its textual representation. The Object Class and Property Term of such entries shall be
the same.

(Example : “Car. Colour. Code” and “Car. Colour. Text”). [In applying this convention to XML,
via XML Schema, the textual description of a code can expressed as an XML Schema
annotation, and therefore is not required in the instance.]

Rule 5: A Dictionary Entry Name shall not contain consecutive redundant words. If the Property
Term uses the same word as the Representation Type, this word shall be removed from the
Property Term part of the Dictionary Entry Name.

For example: If the Object Class is “goods”, the Property Term is “delivery date”, and
Representation Type is “date”, the Dictionary Entry Name is ‘Goods. Delivery. Date’.

In adoption of this rule the Property Term “Identification” could be omitted if the Representation
Type is “Identifier”.

For example: The identifier of a party (“Party. Identification. Identifier”) will be truncated to “Party.
Identifier”.

Rule 6: One and only one Property Term is normally present in a Dictionary Entry Name although
there may be circumstances where no property term is included; e.g. Currency Code.

Rule 7: The Representation Type shall be present in a Dictionary Entry Name. It must not be
truncated.

Rule 8: To identify an object or a person by its name the Representation Type “name” shall be
used.

Rule 9: A Dictionary Entry Name and all its components shall be in singular form unless the
concept itself is plural; e.g. goods.

Rule 10: An Object Class as well as a Property Term may be composed of one or more words.

Rule 11: The components of a Dictionary Entry Name shall be separated by dots followed by a
space character. The words in multi-word Object Classes and multi-word Property Terms shall be
separated by the space character. Every word shall start with a capital letter [In applying this to
XML, use the upper and lower camel case convention, omit the periods and the spacing.]

5 The term ‘information element’ is used generically in the same context as the term data element, and
should not be confused with XML Elements. An information element (or entity as ebXML refers to them)
can be expressed as any of several XML components (XML Elements, attributes, or XML Schema types).

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix A

A - 4

Rule 12: Non-letter characters may only be used if required by language rules.

Rule 13: Abbreviations, acronyms and initials shall not be used as part of a Dictionary Entry
Name, except where they are used within business terms like real words; e.g. EAN.UCC global
location number, DUNS number [see section 5.1.2 Usage of Acronyms and Abbreviations]

Rule 14: All accepted acronyms and abbreviations shall be included in an ebXML glossary [read,
“...included in the element definition in the schema annotation, see section 5.1.2].”

Representation Terms
The following extract is provided from a 12 October 2001 draft of the eBTWG core component
specification. It is provided for information only:

“Table 6-3 Representation Terms

Representation
Term

Definition Links to
Core Component Type

Amount A number of monetary units specified in a currency
where the unit of currency is explicit or implied.

Amount. Type

Code A character string (letters, figures or symbols) that for
brevity and / or language independence may be used
to represent or replace a definitive value or text of an
attribute. Codes usually are maintained in code lists
per attribute type (e.g. colour).

Code. Type

Date A day within a particular calendar year (ISO 8601). Date Time. Type

Date Time A particular point in the progression of time (ISO
8601).

Date Time. Type

Graphic A diagram, graph, mathematical curves, or similar
representation

Graphic. Type

Identifier A character string used to identify and distinguish
uniquely, one instance of an object within an
identification scheme from all other objects within the
same scheme.

[Note: Type shall not be used when a person or an
object is identified by its name. In this case the
Representation Term “Name” shall be used.]

Identifier. Type

Indicator A list of two, and only two, values that indicate a
condition such as on/off; true/false etc. (synonym:
“Boolean”).

Indicator. Type

Measure A numeric value determined by measuring an object.
Measures are specified with a unit of measure. The
applicable unit of measure is taken from UN/ECE Rec.
20.

Measure. Type

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix A

A - 5

Representation
Term

Definition Links to
Core Component Type

Name A word or phrase that constitutes the distinctive
designation of a person, place, thing or concept.

Text. Type

Percent A rate expressed in hundredths between two values
that have the same unit of measure.

Numeric. Type

Picture A visual representation of a person, object, or scene Picture. Type

Quantity A number of non-monetary units. It is associated with
the indication of objects. Quantities need to be
specified with a unit of quantity.

Quantity. Type

Rate A quantity or amount measured with respect to
another measured quantity or amount, or a fixed or
appropriate charge, cost or value e.g. US Dollars per
hour, US Dollars per EURO, kilometre per litre, etc.

Numeric. Type

Text A character string generally in the form of words of a
language.

Text. Type

Time The time within a (not specified) day (ISO 8601). Date Time. Type

Value

Numeric information that is assigned or is determined
by calculation, counting or sequencing. It does not
require a unit of quantity or a unit of measure

Numeric. Type

The following representation terms apply to aggregate Core Components or Core Component types.

Table 6-4 Other Representation Terms

Representation
Term

Definition Links to
Core Component Type

Details The expression of the aggregation of Core
Components to indicate higher levelled information
entities

Not Applicable

Type The expression of the aggregation of Core
Components to indicate the aggregation of lower
levelled information entities to become Core
Component Types. All Core Component Types shall
use this Representation Term

Not Applicable

Content The actual content of an information entity. Content is
the first information entity in a Core Component Type

Used with the content
components of Core
Component Types

The ebXML core components technical reports require that name of “aggregate information entities” use
the special representation type, ‘details’. DON XML developers may omit the term ‘details’ from the end
of tag names when XML element names are generated from the ISO 11179 name. For example, the ISO
11179 data element name 'Address. Details' would be represented in XML as <Address>.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix A

A - 6

The Representation Terms provided by ISO 11179 may not be adequate for a number of engineering,
scientific and operational concepts. In these cases, use of other term names temporarily, such as until the
list of types is expanded, SHOULD be considered; however do this with caution.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix B

B - 1

Appendix B – Schema Development

Possible Schema Development Procedure Summary
The following is presented as a possible procedure for developing schema. It does not represent the
consensus of the DON XML WG; rather it is presented for your consideration and feedback. It is purely
developmental; all or none of it may be found useful.

STEPS

In creating XML components according to these conventions, try the following :

Step 1. Analyze the business processes in which your application will exchange, use or store
information. Understand who the consumers (both human and machine) of the information
your application provides are. The DONXML WG recommends the use of the UMM and UML
for this process, however any model that provides a basic understanding of how information
will be exchanged across system boundaries (application to application, application to
human, or human to application) can provide a basis for development as more rigorous
modeling techniques, such as the UMM, are learned. The business process modeling should
identify and name actors (persons, organizations, or systems) that participate in the process.
The roles that each actor plays should also be identified and named. It is important to
separate the name of the actor from the name of the role because often the same actor will
participate in multiple roles within a process.

Step 2. Based on the information exchange requirements identified in step 1, spend the time to
model the data in each document that will be exchanged within the processes defined in step
1. DONXML strongly recommends using the Unified Modeling Language (UML) to conduct
the modeling. Several efforts are underway to create production rules by which UML models
can be directly used to generate XML documents. An excellent online resource is
xmlmodeling.com.

Step 3. Look for previously developed XML components that can be reused, either in the COE XML
Registry or schema developed by commercial consortia (Appendix D provides references).

Step 4. Create the ebXML/ ISO 11179 compliant name and definition for each element identified in
step 2 that will be used in an information exchange scenario.

Step 5. Identify extra metadata required to understand the business value of each element. This
extra metadata may be expressed in either the schema or the instance as attributes (section
5.4 Attributes versus Elements provides detailed guidance).

Step 6. Analyze the information element. Ensure you have identified specific physical elements for
each data item that will appear in the XML instance. This process will help the team identify
underlying logical elements or generic physical elements that can be reused by declaring
them as XML Schema Types or as abstract elements. This analysis should supplement the
model you defined in step 2, and may require that you iterate through step 2 again. The UML
static structure artifact is extremely useful here. Last, determine relationships between
elements defined here and existing data models and definitions (such as the ebXML core
components, the DDDS, the COE XML Registry and Data Emporium).

Step 7. Identify any common business terms that are associated with the information elements
defined in step 2. If any are identified, one or more of these will be used as the actual XML
element names.

Step 8. Create the schema 6.

6 Up until now, we have not considered how we will express the information in XML. It is a good XML
engineering practice to go through the process of defining and modeling information before the additional

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix B

B - 2

a. If creating schema as a DTDs, your choices are to make the model elements just defined
an XML element or an attribute

b. If employing the XML Schema language, you have some extra choices in deciding how to
express an model element. Model elements can be expressed:

• As types, which may be declared abstract.

• As abstract XML elements.

• As (non-abstract) XML elements or attributes.

One strategy for creating XML Schemas is as follows:

• Create an underlying set of simple and complex XML Schema types
describing base data types, reusable logical and generic physical
elements.

• Declare every model element that will appear in the XML instance as
type that derives from the types declared previously.

• Create XML Schema types and attributes using the same name as the
ISO 11179 named model elements

• Create XML elements names according to business terms, actor and role
names. For instance <TransmitterUnit> is a tag name consisting of a
role name and an actor name. <AcousticFrequency> is a business
term for ‘Acoustic Signal. Frequency. Measure’. When no business
term, or actor/role exists, consider creating element names that consist
of an optional context term plus the ISO 11179 Object Class (plus
property term if appropriate) plus representation term. For example
<DODMaterialItemIdentifier>, where the context term is “DOD”
indicating that the element is specific to the Department of Defense.

• For business terms with commonly used synonyms, such as NSN for
National Stock Number, create a substitution group for the additional
synonyms.

c. Build the schema from the bottom-up and top-down.

Step 9. Register any newly created XML elements with the COE XML Registry.

complications and design alternatives of XML are addressed. Trying to do both information modeling and
XML design at the same time is confusing, and often, critical aspects of one or the other are missed.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix C

C - 1

Appendix C - Tools and References

Tools
Tools for developing and employing XML in applications are flooding the market. However, most if not all
of these tools are in early stages of development. In future revisions to this publication, recommendations
will be provided as to tools that have either been used, evaluated or are know by reputation. Pros and
cons of each will be presented in the case where they are known. Application developer’s that have used
a particular tool may request that it be included in this list, provided it meets at least two of the following
criteria:

• It is relatively mature or produced by an established vendor (such as IBM or Microsoft). A beta
tool from Microsoft, or from IBM Alphaworks may be included, however a beta tool from
CrazyXMLTools.com should not.

• It is a leader in a developing area, such as X2X’s XLink processor. While still immature, it is
currently one of the leaders in XLink processing software.

• It has been used by a Navy activity and found to be useful and relatively free of bugs, or the bugs
are well documented.

• It has been evaluated by a neutral third part (such as Forrester or the Gartner Group, or an
established periodical) with favorable results.

Submit proposed tools to the editor using the format of the following table:

Name & Link Description Pro’s Con’s

XML, XSL and Schema Development

XML Parsers and XSL Processors

Databases

“Servers”

Miscellaneous

A more complete list of available XML software is maintained at www.xmlsoftware.com.

Publications
The following publications have been reviewed by the editor and found to be good reference material.
The table presents several levels of reader and recommends appropriate reading for each.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix C

C - 2

Audience Title ISBN Author(s) Date

Management
/Business

XML: A Manger's Guide 0-201-43335-4 Dick 2000

 ebXML: The New Global Standard
for Doing Business on the Internet

0-735-71117-8 Kotok &
Weber

2001

Business /
Technical

XML in a Nutshell : A Desktop
Quick Reference (Nutshell
Handbook)

0-596-00058-8 Harold &
Means

2001

 Metadata Solutions: Using
Metamodels, Repositories, XML,
and Enterprise Portals to Generate
Information on Demand

0-201-71976-2 Tannenbaum 2001

 Modeling XML Applications with
UML: Practical e-Business
Applications

0-201-70915-5 Carlson 2001

Technical The Wrox Professional XML Series Wrox

 Building B2B Applications with
XML: A Resource Guide

0-471-40401-2 Fitzgerald 2001

 Java & XML, 2nd Edition: Solutions
to Real-World Problems

0-596-00197-5 McLaughlin 2001

 SOAP: Cross Platform Internet
Development Using XML

0-130-90763-4 Seely &
Sharkey

2001

 Inside XSLT 0-735-71136-4 Holzner 2001

 XML Schema Development: An
Object-Oriented Approach

0-672-32059-2 Brauer 2001

Internet

BizTalk http://www.biztalk.org/home/default.asp

COE XML Registry: http://diides.ncr.disa.mil/xmlreg/user/index.cfm

ebXML http://www.ebxml.org

eBTWG http://www.ebtwg.org/

OASIS http://www.oasis-open.org/

Open Applications Group http://www.openapplications.org/

The Object Management Group www.omg.org

RosettaNet http://www.rosettanet.org/rosettanet/Rooms/DisplayPages/LayoutInitial

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix C

C - 3

Schema.net http://www.schema.net

W3C http://www.w3.org

XML.com http://www.xml.com/

The XML Cover Pages http://www.oasis-open.org/cover/sgml-xml.html

XML Software.com http://www.xmlsoftware.com/

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix D

D - 1

Appendix D – W3C XML Recommendations
Appendix deleted. A current list may be found at the W3C Technical Reportsxix page.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix E

E - 1

Appendix E – Combined XML Schema Example
The following XML Schema is a combined example illustrating some of the guidance and concepts
discussed in this document. The example is non-normative, and does not represent the consensus of the
DONXML TechTeam. It is provided for information only.

In this example, a tag from the COE XML Registry, <ACOUST_SIGNA_FREQ> is reused, but the
principles of ISO 11179 and camel case are applied using the functionality of the XML Schema language
to maintain interoperability.

The COE XML Registry defines a tag <ACOUST_SIGNA_FREQ> in the Tracks & Reports Namespace.
An instance might look like this:

<ACOUST_SIGNA_FREQ>12.100</ACOUST_SIGNA_FREQ>

Definition: ACOUSTIC SIGNATURE FREQ. THE FREQUENCY OF AN EMITTED ACOUSTIC
SIGNAL TO THE NEAREST ONE THOUSANDTH HERTZ.

Maximum Length: 10

You can view this tag definition at http://diides.ncr.disa.mil/xmlreg/user/detail.cfm?ir_id=8358.

A possible XML Schema for this element:

<?xml version="1.0" encoding="UTF-8" ?>
- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

- <xs:complexType name="MeasureType">

- <xs:annotation>

- <xs:documentation source="http://www.ebxml.org/specs/ccDICT.pdf">

- <ebXML>

 <CoreComponent UID="core000152">Text. Type</CoreComponent>

 </ebXML>

 </xs:documentation>

 </xs:annotation>

- <xs:simpleContent>

- <xs:extension base="xs:decimal">

 <xs:attribute name="measureUnitCode" type="xs:string"
use="optional" default="HZ" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

- <xs:complexType name="AcousticSignalFrequencyMeasure">

- <xs:annotation>

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix E

E - 2

- <xs:documentation
source="http://diides.ncr.disa.mil/xmlreg/user/detail.cfm?ir_id=8358
">

- <COEXMLRegistry>

 <Namespace prefix="TAR">Tracks and Reports</Namespace>

 <TagName>ACOUST_SIGNA_FREQ</TagName>

 <Definition>acoustic SIGNATURE FREQ. THE FREQUENCY OF AN
EMITTED ACOUSTIC SIGNAL TO THE NEAREST ONE THOUSANDTH
HERTZ.</Definition>

 <RegistryID>8358</RegistryID>

 </COEXMLRegistry>

 </xs:documentation>

- <xs:documentation
source="http://diides.ncr.disa.mil/xmlreg/user/detail.cfm?ir_id=8358
">

- <COEXMLRegistry>

 <Namespace prefix="TAR">Tracks and Reports</Namespace>

 <TagName>ACOUST_SIGNA_FREQ</TagName>

 <Definition>acoustic SIGNATURE FREQ. THE FREQUENCY OF AN
EMITTED ACOUSTIC SIGNAL TO THE NEAREST ONE THOUSANDTH
HERTZ.</Definition>

 <RegistryID>8358</RegistryID>

 </COEXMLRegistry>

 </xs:documentation>

 </xs:annotation>

- <xs:simpleContent>

- <xs:restriction base="MeasureType">

 <xs:totalDigits value="10" />

 <xs:fractionDigits value="3" />

 <xs:pattern value="\d*.\d{3}" />

 <xs:attribute name="measureUnitCode" fixed="HZ" />

 </xs:restriction>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="ACOUST_SIGNA_FREQ"
type="AcousticSignalFrequencyMeasure" />

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix E

E - 3

- <xs:element name="AcousticFrequency"
type="AcousticSignalFrequencyMeasure"
substitutionGroup="ACOUST_SIGNA_FREQ">

- <xs:annotation>

 <xs:documentation>Business Term</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:schema>

This Schema has 2 elements and two types declared:

Elements Complex types

ACOUST_SIGNA_FR
EQ

AcousticSignalFrequencyMe
asure

AcousticFrequency MeasureType

The highest-level element:

element ACOUST_SIGNA_FREQ

diagram

type AcousticSignalFrequencyMeasure

facets totalDigits 10

fractionDigits 3

pattern \d*.\d
{3}

attributes Name Type Use Default Fixed

measureUnitCode HZ

source <xs:element name="ACOUST_SIGNA_FREQ"
type="AcousticSignalFrequencyMeasure"/>

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix E

E - 4

This element name is reused from the COE XML Registry. Also, note that the “facets” of the element
specify the domain restrictions. The regular expression pattern “\d*.\d{3}” translates to, “Any number of
digits followed by a period followed by 3 digits. We are relying on the total digits facet to constrain the
length. The fraction digits facet specifies that there can be at most 3 digits past the decimal point,
however the regular expression pattern requires that there be exaclty three digits.

The element has one fixed attribute, measureUnitCode = “HZ”.

As indicated by its diagram, the above example has a business term:

element AcousticFrequency

diagram

type AcousticSignalFrequencyMeasure

facets totalDigits 10

fractionDigits 3

pattern \d*.\d{3}

attributes Name Type Use Default Fixed

measureUnitCode HZ

annotation documentation Business
Term

source <xs:element name="AcousticFrequency"
type="AcousticSignalFrequencyMeasure"
substitutionGroup="ACCOUST_SIGNA_FREQ">

 <xs:annotation>

 <xs:documentation>Business Term</xs:documentation>

 </xs:annotation>

</xs:element>

This business term is declared substitutable for first element because it is in the first element’s
substitution group. It also has the same fixed attribute.

Notice that both this element and the first derive from the same type. You can determine this from the
type reference in the above element declarations and tables or by looking at the “used by” row below.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix E

E - 5

complexType AcousticSignalFrequencyMeasure

diagram

type restriction of MeasureType

used by

elements ACCOUST_SIGNA_FREQ
AcousticFrequency

facets

totalDigits 10

fractionDigits 3

pattern \d*.\d{3}

attributes Name Type Use Default Fixed

measureUnitCode xs:string optional HZ

annotation

documentation

<COEXMLRegistry>

 <Namespace prefix="TAR">Tracks and
Reports</Namespace>

 <TagName>ACOUST_SIGNA_FREQ</TagName>

 <Definition>acoustic SIGNATURE FREQ. THE
FREQUENCY OF AN EMITTED ACOUSTIC SIGNAL
TO THE NEAREST ONE THOUSANDTH HERTZ.
 </Definition>

 <RegistryID>8358</RegistryID>

</COEXMLRegistry>

source <xs:complexType name="AcousticSignalFrequencyMeasure">

 <xs:annotation>

 <xs:documentation

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix E

E - 6

source="http://diides.ncr.disa.mil/xmlreg/user/detail.cfm?ir_id=8358">

 <COEXMLRegistry>

 <Namespace prefix="TAR">Tracks and Reports</Namespace>

 <TagName>ACOUST_SIGNA_FREQ</TagName>

 <Definition>acoustic SIGNATURE FREQ. THE FREQUENCY OF AN EMITTED
ACOUSTIC SIGNAL TO THE NEAREST ONE THOUSANDTH HERTZ.</Definition>

 <RegistryID>8358</RegistryID>

 </COEXMLRegistry>

 </xs:documentation>

 </xs:annotation>

 <xs:simpleContent>

 <xs:restriction base ="MeasureType">

 <xs:totalDigits value="10"/>

 <xs:fractionDigits value="3"/>

 <xs:pattern value="\d*.\d{3}"/>

 <xs:attribute name="measureUnitCode" fixed="HZ"/>

 </xs:restriction>

 </xs:simpleContent>

</xs:complexType>

It is in this Schema type that most of the declarations are made, and accordingly the most reuse is
achieved. Note that the type name is the ISO 11179 name, and the documentation is taken from the COE
XML Registry. Also, the domain constraints that each of the two elements have are inherited from their
definition here.

This has the ‘measureUnitCode’ attribute; it is here that that attribute is declared as fixed. The two
elements inherit the fixed attribute.

Note this type is derived from another type “by restriction” (see the ‘type’ row of the table below). The “by
restriction” phrase means that this type is a more restrictive subset of a more generic type:

complexType MeasureType

diagram

type extension of xs:decimal

used by

complexType AcousticSignalFrequen

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix E

E - 7

cyMeasure

attributes

Name Type Use Default Fixed

measureUnitCode xs:string optional HZ

annotation

documentation <ebXML>

 <CoreComponent UID="core000152">Text.
Type</CoreComponent>

</ebXML>

source <xs:complexType name="MeasureType">

 <xs:annotation>

 <xs:documentation source="http://www.ebxml.org/specs/ccDICT.pdf">

 <ebXML>

 <CoreComponent UID="core000152">Text. Type</CoreComponent>

 </ebXML>

 </xs:documentation>

 </xs:annotation>

 <xs:simpleContent>

 <xs:extension base ="xs:decimal">

 <xs:attribute name="measureUnitCode" type="xs:string" use="optional"
default="HZ"/>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

This type is created from the ebXML core component, ‘Measure. Type’ as indicated by it documentation
elements. The UID attribute of the <CoreComponent> tag provides a reference back to the file pointed to
by the documentation source attribute which is a URL, “http://www.ebxml.org/specs/ccDICT.pdf ”. It is an
extension of the XML Schema base type ‘decimal’. The extension is the addition of a ‘measureUnitCode’
attribute that is optional, with a default value of “HZ”. Remember we changed it to a fixed attribute when
we reused this type in the ‘AcousticFrequencyMeasure’ schema type declared previously.

Note the use of customized tags to further markup information inside the <xs:documentation> tag.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix E

E - 8

Some examples of XML instance fragments this document will validate:

<ACOUST_SIGNA_FREQ>100.000</ACOUST_SIGNA_FREQ>

or

<ACOUST_SIGNA_FREQ
measureUnitCode="HZ">100.000</ACOUST_SIGNA_FREQ>

or

<AcousticFrequency measureUnitCode="HZ">100.000</ AcousticFrequency >

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix F

F- 1

Appendix F – Sample XML Document Headers

Sample Schema Header

<?xml version=”1.0” encoding=”UTF-8”>

<!— Schema/DTD Header ****************************

Schema Name: SPAWARVPO$2-1_FolderData$1-1.xsd

Schema Version: 1.1

COE Namespace(s): TBD

Navy Functional Data Area: Administration

Current version available at (URL): https://www.spawar.navy.mil/vpo/schemas/

Other Schemas Imported (XML Schema only):

**** Namespace Prefix: PER “http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm”

**** Schema File Name: BUPERSBUPERSOnLine$3-0_Document$2-2.xsd

**** Available at URL: www.bupers.navy.mil/bupersOnLine/schemas/

Other Schemas Included (XML Schema only): None

External DTDs Referenced (DTD only): n/a

**** Name: n/a

**** Available at (URL): n/a

Description: Provides information regarding the content of VPO folders such as content file names, file
sizes, file owner, file status, and file access information.

Application: Virtual Program Office

Application Version: 2.1

Application Interface:

XML data is available from the VPO application via HTTP at
https://www.spawar.navy.mil/vpo/GetFolderInfo.asp. Input queries via HTTP GET with query string
format, “...?dir=directoryName”. A complete interface description document is available at
https://www.spawar.navy.mil/vpo/interfaces/GetFolderInfo.txt

Associated Stylesheet:

**** Name: SPAWARVPO$2-1_ViewFolderContents$1-0.xsl

**** Available at (URL): https://www.spawar.navy.mil/vpo/stylesheets/

Developed by (Gov’t Activity): SPAWAR 08

Point of Contact Name: Joe Smith

Point of Contact Email: jsmith@spawar.navy.mil

Change History:

CHANGE # Version DATE DESCRIPTION OF CHANGE

 0 1.0 15 Sep 2001 Initial release

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix F

F- 2

 1 1.1 30 Sep 2001 Updated to include file size information

**

-->

This is a generic header that is provided in text-only, non-XML format. It can be used for either a DTD or
XML Schema. A possibly more useful approach would be to markup header information using XML. The
tags could be encapsulated by XML comment markup (<!-- ... --> or in the case of XML Schemas,
included as an annotation following the XML Schema declaration. Marking up header information could
be very useful; for instance a large number of schemas could be automatically analyzed to determine
which COE Namespaces and Functional Data areas they fell into. This would be a time consuming
manual process otherwise. The DONXML WG may work to standardize the tags and procedures for
providing header information in XML markup. Until then, it is important to get the information somewhere
in the document. Activities wishing to experiment with different strategies and techniques for providing
header data are encouraged to do so and report there findings to the DONXML WG. Consider the above
example the minimum information we think will be required; your input is encouraged.

Notes on header fields:

Header Item Description

Schema Name: The standard name of the schema file. See Document Naming Convention

Schema Version: The version of the schema. Adopt a major and minor version number
separated by a ‘.’

Tested With: List the name and version number of the XML processor(s) that have been
are tested known to corectly validate this schema.

COE Namespace(s): Identify the COE Namespace that the elements from this schema are
registered in by specifying the COE XML Namespace Prefix from the COE
XML Registry. You can specify muliple Namespaces for XML Schemas that
use tags from mulitple COE Namespaces. This is only possible through the
use of XML Schemas because DTD’s do not support XML Namespace
prefixing.

Functional Data Area: Indicate which Navy Functional Data Area the application that uses this
schema belongs to. Refer to the DMI Instruction (SECNAVINST 5000.36)
and implementation guidance for a list.

Current version available at (URL): If this schema is URL accessable, put the address here. It is highly
recommended that all schemas be available on-line to assist other activities
desiring to interoperate.

Other Schemas Imported (XML
Schema only):

The next three fields are repeatable

The XML Schema language allows the reuse of existing XML Schema so
that schemas can be modularized. The first way of doing this is via the XML
Schema Import syntax.

**** Namespace Prefix and URL: The XML Schema Import syntax is used when desiring to reuse a schema
whose elements belong to a different XML Namespace than the elements
into which the import is being conducted on. Specify here the

**** Schema File Name: The standard name of the imported schema file. See Document Naming
Convention

*** Available at (URL): If this schema is URL accessable, put the address here. It is highly
recommended that all schemas be available on-line to assist other activities
desiring to interoperate.

Other Schemas Included (XML The second way XML Schemas allow reuse of other schemas is through the

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix F

F- 3

Schema only):

The next two fields are repeatable

XML Schema Include syntax. Includes can be used when the elements in
the included schema belong to the same XML Namespace as the schema
into which the include is occuring. A schema may both include and import.

**** Schema File Name: The standard name of the imported schema file, see Document Naming
Convention

*** Available at (URL):

If the schema file to be imported is URL accessable, put its address here. It
is highly recommended that all schemas be available on-line to assist other
activities desiring to interoperate.

External DTDs Referenced (DTD
only):

The next two fields are repeatable

Information regarding any External Parameter Entity references are made to
an external DTD. This approximates the modular design capability available
in XML Schema.

**** Name: The standard name of the DTD file, see Document Naming Convention

**** Available at(URL): If this schema DTD is URL accessable, put its address here. It is highly
recommended that all schema DTDs be available on-line to assist other
activities desiring to interoperate.

Description: Plain text description of the type of information described by the schema.

Application: The name of the application which produces XML documents that validate to
this schema.

Application Version: The version (major.minor) of the application that produces this schema.

Application Interface: A plain text descriptive summary of how other applications interface with this
application. For example, via HTTP, using query parameters passed via
HTTP POST or GET. Examples of query name/value pairs may be provided.
If SOAP is used, should provide a brief description of the method calls and
parameters. A good XML engineering practice is to completely document
your application interface; if you have done so, reference that documentation
here. Making the interface specification available via a (secure) URL will
assist other developers in interoperating.

Associated Stylesheet: If a stylesheet is available to render instances that validate to this schema,
provide information here.

**** Name: The standard name of the stylesheet file, see Document Naming Convention

**** Available at (URL) If the stylesheet is URL accessable, put the its address here. It is highly
recommended that all stylesheets be available on-line to assist other
activities desiring to interoperate.

Developed by (Gov’t Activity): Government Activity and Office code.

Point of Contact Name: Joe Smith Name of person to contact with questionions regarding the schema.

Change History: The following fields provide an audit trail of changes.

CHANGE # Keep a sequentially numbered list of changes.

Version You should also assign Major and minor version numbers.

DATE Date implemented

DESCRIPTION OF CHANGE Plain text description.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix F

F- 4

Sample Stylesheet Header
This sample stylesheet header is the similar to the schema header with the addition of information
regarding which version of a schema the stylesheet is written from, and the removal of non-applicable
items.

<?xml version=”1.0”>

<!— Stylesheet Header ****************************

Stylesheet Name: SPAWARVPO$2-1_ViewFolderData$1-1.xsl

Stylesheet Version: 1.1

Tested to:

**** Schema Name: SPAWARVPO$2-1_FolderData$1-1.xsd

**** Schema Version: 1.1

**** XSL Processors: MSXML 3.0, XALAN 1.2.2

COE Namespace: TBD

Navy Functional Data Area: Administration

Current version available at (URL): https://www.spawar.navy.mil/vpo/stylsheets/

Other Stylsheets Imported:

**** File Name: BUPERSBUPERSOnLine$3_Document$2-2.xsl

**** Available at URL: www.bupers.navy.mil/bupersOnLine/stylsheets/

Description: XSLT compliant stylesheet renders folder contents as an HTML table

Application: Virtual Program Office

Application Version: 2.1

Developed by (Gov’t Activity): SPAWAR 08

Point of Contact Name: Joe Smith

Point of Contact Email: jsmith@spawar.navy.mil

Change History:

CHANGE # Version DATE DESCRIPTION OF CHANGE

 0 1.0 15 Sep 2001 Initial release

 1 1.1 30 Sep 2001 Updated to include file size information

**

-->

The following notes indicate differences between the stylesheet and schema header only.

Header Item Description

Stylesheet Name: The standard name of the schemastylesheet file. See Document Naming
Convention

Stylesheet Version: The version of the schema. Use a major and minor version number
separated by a ‘.’

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix F

F- 5

Tested to: Information regarding the specific schema and software this stylesheet has
been tested with.

**** Schema Name: Name(s) of the schemas this stylesheet has been tested with.

**** Schema Version: Version(s) of the schemas this stylesheet has been tested with.

**** XSL Processors: Name(s) of the XSL processors this stylesheet has been tested with.

Other Stylesheets Imported

The next two fields are repeatable

Stylesheets, like schema can be constructed modularly. Provide information
here regarding other stylesheets reused.

**** File Name: The standard name of the file. See Document Naming Convention

*** Available at (URL): If this Stylesheet is URL accessable, put its address here.

Sample Instance header
It is important that XML documents include some basic information. Most of the needed information can
be gleaned from the header data provided by the schema that describes the document and the
stylesheet(s) that transform or render it. The XML specifications provide syntax for pointing to schemas
and stylesheets at the beginning of an XML document. In cases where validation against a schema
and/or transformation with a stylesheet is not required, it is still desirable to provide references to
schemas and stylesheets if available, consider this example:

<?xml version="1.0" encoding="UTF-8" ?>
<! --

Schema and Stylesheet Reference Data:

stylesheet type = xslt

 url = http://spawar.navy.mil/stylesheets/SPAWARVPO$2-
1_ViewFolderData$1-1.xsl

 version = 1.1

schema type = XML Schema (W3C)

 url = http://spawar.navy.mil/schemas/SPAWARVPOV2-
1FolderDataV1-1.xsd

 version = 1.1

 -->

 <root />

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix G

G - 1

Appendix G – Draft Glossary and Acronyms
The following draft glossary is provided in advance of the DONXML TechTeam’s future XML
Glossary deliverable. It represents the understanding and opinion of the editor, and does not reflect
the consensus of the DONXML WG. These items are provided for information only.

Terms
Abstract – In the context of an XML Schema, an XML element or Schema type may be declared
abstract, meaning that it may not be used directly. An abstract element may not be directly used in an
instance, but must have in its substitution group a non-abstract element. For instance, an abstract
element, ‘Address’, which defines the contents of an address. A non-abstract ‘HomeAddress’ element
that is substitutable for ‘Address’ can be used as an XML element. The ‘HomeAddress’ structure reuses
the previously defined ‘Address’ contents, but the tag provides a specific context. Schema types may also
be declared abstract, similar to abstract elements, abstract types may not be directly used to reference
elements, but must have a non-abstract type that extends/restricts from it. The non-abstract type can then
be used to reference XML elements. The concept of abstractness is taken from object-oriented
programming, where an abstract class may be defined; requiring sub-typing prior to instantiation.

Binding - A term frequently used in reference to XML applications taken from the field of computer
science. In the context of applications that have a public interface that communicates in XML (such as
the case with a web service), binding refers to the information required and the process by which an
external source connects to, and interacts with it to get data in XML. Binding can also refer to the process
and application required to connect a software module (e.g. a Java class, or COM object) to a public XML
interface or the way in which the public XML is related to an underlying data source (such as a relational
database).

BPSS - The Business Process Specification Schema was developed as part of the ebXML project as a
schema for describing a business process in an XML instance. In may be created from UML models of
business processes developed according to the UMM as described in the technical report, Business
Process and Business Information Analysis Overview v1.0xx. The BPSS is available in either DTD format
xxi or XML Schema (Candidate Recommendation) format xxii.

Business Term - The ebXML specifications refers to a business term as a commonly used term
referencing a commonly understood concept within a specific domain. To enhance understandability, it is
appropriate to use business terms as XML Element names (when they exist), rather that the often
esoteric ISO 11179 syntax.

C4ISR – Command, Control, Communications, Computers, Intelligence, Surveillance, and
Reconnaissance

Camel Case – A convention in which names of elements and attributes are all lower case with the
exception of the beginning of a new word, which is in uppercase. ebXML differentiates between upper
camel case where the first letter of the name is also capitalized and lower camel case where it is not.
Example of an upper camel case name: UpperCamelCase. A lower or just camel case name:
lowerCamelCase. Camel case is emerging as the industry norm for XML element naming. ebXML
specifies elements to be in upper and attributes to be in lower camel case, while BizTalk, RosettaNet, and
Oasis use straight camel case for both elements and attributes.

CSS - Cascading Style Sheets. A set of W3C recommendations for styling HTML and XML documents
based on the application of formatting instructions in a linear, cascading fashion. CSS is an alternative to
styling XML with XSL, but CSS does not have the transformational component of XSLT.

Class – A software component that provides instructions for the creation of an object. Applications are
said to create instances of a class (“objects”) through a process referred to as instantiation. In the context
of XML, a schema is a “class” that describes XML instances (data “objects”).

COE XML Registry – The COE XML Registryxxiii “...provides a baseline set of XML components
developed through coordination and approval among the COE community. The Registry allows you to
browse, search, and retrieve data that satisfy your requirements.” DON XML Policy requires that all

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix G

G - 2

activities developing XML in the DON register components developed with the appropriate COE XML
Namespace.

COE Namespace – The COE XML Registry is divided into a “Namespaces”. ”A Namespace is a
collection of people, agencies, activities, and system builders who share an interest in a particular
problem domain or practical application. This implies a common worldview as well as common
abstractions, common data representations, and common metadata. The COE Data Emporium, including
the XML Registry, allows Namespaces to publish their existence and their available information resources
so that outsiders may discover them and assess whether or not they want to share.” A COE XML
Namespace is an extension of the XML Namespace concept. The terms “XML Namespace” and “COE
XML Namespace” are not synonymous.

COE Namespace Manager – Each COE XML Namespace has a central activity responsible for it. The
individual responsible for coordinating and administering the Namespace is the Namespace manager.
Point of contact information for the Namespace Managers is available by clicking on the Namespace
hyperlinksxxiv on the registries web site.

COE XML Namespace Prefix – Each COE XML Namespace has been assigned a three-letter prefix that
may be used as XML Namespace qualifiers in XML instances and Schemas.

COE XML Registration Package – Activities developing XML within the DON are required to submit a
specially formatted package of information to the COE Registry containing metadata about the
components registered. Information about how and what to register can be found herexxv .

COM Object – The Common Object Model is a Microsoft sponsored interface specification for creating
interoperable software components. Distributed COM or DCOM is Microsoft’s COM interface standard for
distributed computing, i.e., where an “application” consists of software “objects” distributed across nodes
of a network. DCOM is similar to the Java based EJB specification, but works only for Microsoft operating
systems. DCOM objects can communicate via TCP/IP and their own proprietary messaging framework
(Windows Distributed iNternet Architecture or DNA). Alternatively, COM objects can communicate with
other non-COM / non-Window’s objects such as Java Classes or EJB’s via XML and SOAP.

CORBA – Common Object Request Broker Architecture. CORBA is a framework created by the Object
Management Groupxxvi (OMG) to facilitate platform / operating system / programming language neutral
distributed computing. Software components or “objects” interact in a client-server relationships, with an
Object Request Broker (ORB) software component acting as intermediary. Via the IIOP, CORBA based
distributed applications can operate across the Internet. Most commonly used with the Java language,
though CORBA is language independent.

Core Components – One goal of the ebXML effort is to define a set of universal, core components that
are contextually neutral and can be used across all domains to express semantics of common business
concepts. Core components may be information entities, defined in the ebXML Core Component
Dictionary technical reports, or process components discussed in the ebXML Business Process technical
reports. Note that the core component technical reports do not address how an information component
will be expressed in XML – this was an intentional omission on the part of ebXML. It was felt that prior to
defining rules for creation of XML, a necessary first step was to create a schema neutral standard for
defining components in business terminology. The work of defining how core components map to XML
will be undertaken by the Core Component Project Teamxxvii of the UN/CEFACT sponsored Electronic
Business Transition Working Group (eBTWG).

DDDS – The Defense Data Dictionary Systemxxviii defines standard data elements per the DOD 8320
series of documentsxxix. The DDDS provides definitions of Standard Data Elements (SDEs) from core
data models across all DOD data domains. The DDDS elements are mainly logical in nature, and may be
used to express logical, semantic relationships between XML elements. XML Schema types may be used
to express relationships to DDDS standard data elements.

Document Type Declaration – A declaration at the beginning of an XML document indicating a DTD to
which the instance must conform.

DOM - The Document Object Model. The set of W3C DOM recommendationsxxx form application interface
descriptions (APIs) for expressing the contents of XML or HTML “documents” as hierarchical tree-like

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix G

G - 3

models of information with data forming the “leaves” of the tree. XML Processors that implement the DOM
interface parse an entire XML document, creating a data tree in memory. Applications that call a DOM
parser access data from the XML object tree through a set of programmatic instructions defined by the
specifications. The instructions allow applications to “walk the document tree”, searching for elements and
attributes that meet query criteria (XPath expressions). Results are returned to the calling application and
assigned to application variables for further processing.

DTD - Document Type Definition. A schema syntax that is part of the XML 1.0 specification and derived
from SGML.

EJB – Enterprise Java Beans. EJB is an interface specification which a Java class my implement.
Software objects that implement the EJB interface may interoperate in an enterprise (distributed)
environment, even across the Internet via TCP/IP and the CORBA IIOP. In this fashion, an “application”
may consist of a number of independent software components (“objects”) that are physically separated at
different nodes of a network, but functioning together as a single application similar to the Microsoft
(D)COM specification.

Entity – In the context of a DTD, an entity is a declarative construct defining, referencing text, or a binary
file. Entities are defined in the DTD, and referenced elsewhere in the DTD (parameter entity) or in the
body of the XML (general entity). A validating parser encountering a reference to a previously defined
entity during the validation process will insert the entity’s value in place of the entity reference. Internal
entities are declared in the DTD and may be general or parameter. External entities point to an external
file containing the entity declaration via URI reference; they also may be internal or external. A parsed
entity is some form of encoded text and is therefore processed by a parser. An unparsed entity is a
reference to binary file that will not be parsed. Unparsed entities are always external. Through entities,
DTD’s may declare a common construct once, and reuse it many times throughout the DTD or in the
instance. A common use for parameter entities is to declare a common set of attributes in the DTD.
Assigning the attributes to an element only requires a reference to the parameter entity, vice retyping the
entire attribute list many times. A second use of external unparsed general entities is to make reference
to a binary file (such as an image or sound file) within an XML instance.

EDI – Electronic Data Interchange. A term referring to the conduct of eBusiness through the exchange of
electronic messages. Two message standards exist as rigorously defined sets and segments, one
maintained by the U.S. led ANSI X12 body, and the second led by UN/EDIFACT.

Fatal Error - [From the XML 1.0 specification] "An error which a conforming XML parser must detect and
report to the application. After encountering a fatal error, the parser may continue processing the data to
search for further errors and may report such errors to the application. In order to support correction of
errors, the processor may make unprocessed data from the document (with intermingled character data
and markup) available to the application. Once a fatal error is detected, however, the processor must not
continue normal processing (i.e., it must not continue to pass character data and information about the
document's logical structure to the application in the normal way)." In other words, upon detecting a fatal
error (such as a well-formedness violation), the parser is unable to provide information from the XML
document to the calling application such that the application may continue functioning normally.

HTML - Hypertext Markup Languagexxxi

Interface – The process by which a software application interacts with other software or users. In object-
oriented programming an (software) “object’s” interface is often described separately from the internal
logic in a process know as “encapsulation”. Essentially the interface encapsulates and hides the internal
logic. This allows flexibility to change and improve object code without affecting other objects. An
interface description is made public so other objects/applications know how to interact. Software is said to
“implement” an interface if it conforms to the behavior as defined in an interface description. The Object
Management Group (OMG) has defined a formal syntax (language) for defining interfaces in a
programming language neutral fashion. This is called the OMG Interface Description Languagexxxii (OMG
IDL). This IDL is used to define interface specifications such as the DOM API and CORBA. For
developers implementing public XML interfaces, it is a good idea to document exactly how other
applications connect, query, and receive (i.e. bind to) your application; while it is not necessary to go to

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix G

G - 4

the trouble of writing a formal IDL interface description, some kind of formal document will greatly aid
other applications desiring to share data.

IIOP – Internet Inter-Orb Protocol. A TCP/IP based protocol that facilitates communication between
CORBA ORBs. Via IIOP, CORBA client objects at one location on the Internet can communicate with
CORBA server objects at another node and vice versa.

ISO 11179 - Information Technology - Specification and Standardization of Data Elements is a 6-part ISO
standard providing a framework and methodologies for developing, documenting, and registering
standard data elements. Of interest to XML developers is Part 5: Naming And Identification Principles For
Data Elements upon which the ebXML naming convention is based. The specifications are available from
the ISO Storexxxiii under section 35.040 - Character Sets And Information Coding for a small fee.

Markup - Special characters used by Markup Languages (SGML, XML, HTML) to differentiate data from
metadata. SGML allows document authors the flexibility of specifying which characters are used for
markup, where as in XML the markup characters are fixed. Markup characters may not be used in data
text (unless special precautions are taken). In the tags definition example, the markup characters are '<'
(greater than), '>' (less than), and '/' (forward slash). The XML specificationxxxiv defines start tag markup
as opening with a '<' and ending with a '>'. It specifies that end tag markup as opening with '</' and ends
with '>'.

Metadata - Data about data. For example, for the data '3000N', the metadata might be 'latitude'. Markup
languages such as SGML and XML encapsulate data with tags that contain text describing the metadata.
See the example provided in the tags definition.

Normative – A term frequently used by software specifications to mean required, mandatory, or
representing the only way to accomplish something. Often references are cited as normative, meaning
that the requirements of these references apply to the document being read, or as non-normative,
meaning they are provided as information only.

Object – A term used frequently in relation to XML and computer science. Strictly speaking, an object is a
run-time software construct that resides in the Random Access Memory (RAM) of the host computer.
Objects are created by applications from code that defines the object’s behavior; this code is called a
class. In object-oriented programs, objects interact with other objects to create the behavior of the
application. An object’s behavior is described by an Interface consisting of methods and properties. A
method can be thought of as a behavior of the object that can be triggered by calling it and optionally
passing parameters. For instance, the object ‘myAccount’ might have the method
‘getBalance(accountNumber)’. Object oriented languages use the ‘dot’ notation to refer to objects and
methods. From the previous example, ‘currentBalance == myAccount.getBalance(accountNumber)’
is a code snippet that assigns to the ‘currentBalance’ variable the balance returned from the
‘myAccount’ object when the ‘getBalance()’ method is called by passing in the ‘accountNumber’
variable. Object properties are similar to methods, but instead of calling a behavior, a property call to an
object returns a previously set value of the property. Returning to the example, ‘myName ==
myAccount.accountOwner’ sets the ‘myName’ variable equal to the ‘accountOwner’ property of the
‘myAccount’ object, conversely ‘myAccount.accountOwner == myName’ sets the ‘accountOwner’
property of the ‘myAccount’ object to the value of the ‘myName’ variable. XML that has been parsed by
an XML processor implementing the DOM API is transformed into a set of objects that may be used by
the calling application to extract data from the XML. Also, an application may construct a DOM tree of
objects in memory then transmit the data to another application or object as a textually encoded string of
XML. The receiving object then accesses the data via the DOM or SAX APIs. Since the XML format is
neutral, a COM object created by a Windows application may interact with an EJB object running on a
Unix platform for true cross-platform, language independent distributed computing.

Payload (XML) – Protocols and frameworks such as SOAP, BizTalk, and ebXML use XML to markup
message header information necessary for binding, reliable messaging, and security. The term ‘payload’
refers to the XML being transmitted that contains the actual business information communicated.

Public (XML) Interface – XML may be employed internal to an application or it may be used to
communicate information to another systems outside the originating applications environment. The term
‘Public Interface’ refers to XML used by an application or set of homogeneous applications to

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix G

G - 5

communicate with other applications across system boundaries. DOD and DON policy for registration of
XML components applies to public interfaces; these policies are not intended to restrict the use of XML
internal to systems; in fact, it is recommended that applications separate internal XML grammars
processed by application code from that used for external communications.

Qualified (elements and attributes) – The practice of prefixing an element or an attribute with a XML
Namespace qualifier in accordance with the Namespaces in XMLxxxv W3C Recommendation. This allows
two elements with the same name to be disambiguated by an XML processor.

Regular Expression – A language for defining patterns in strings and numbers. The XML Schema
language allows elements and attributes to be constrained by regular expressions to provide a precise
description of the range of possible values. For instance an element of type=’integer’ could be further
constrained to be only a 3 digit integer by the regular expression ‘/d{3}’.

Rendering (XML) - XML is not easily useable to readers in its native format and should be transformed
for presentation (rendered), rendered for presentation, either by a CSS, XSLT (to well-formed HTML) for
browser viewing, or by XSL-FO into a format for viewing by another presentation applications (e.g. into
Adobe Acrobat .pdf, or MS Word .doc files.) Note: It is a common assumption that all XML must be
rendered (by a stylesheet) to be useful therefore all XML must have a stylesheet. This is a mistake; XML
data can be used by an application via an API and never get rendered at all.

SAX - Simple API for XML. SAXxxxvi is an open-source interface for accessing information from XML
documents. SAX parsers process a document, triggering events in the calling application corresponding
to the parser encountering opening tags, closing tags and character data. Accessing XML data via SAX is
very quick and places less demands on system resources that DOM, however once processed, a
document must be re-parsed if the required information was not retained initially. This can be
conceptualized as “serial” access to the information.

Schema - Within the context of XML, a document describing a set of XML Instances. Schemas may be
expressed in a number of different languages. Most familiar is the Document Type Definition (DTD)
syntax described in the XML 1.0 specification. Schemas provide the rules against which a validating
parser validates an instance of XML.

SGML - The Standard Generalized Markup Language [ISO 8879xxxvii]. SGML is the parent of both HTML
and XML.

SOAP - "SOAP is the Simple Object Access Protocol, a way to create widely distributed, complex
computing environments that run over the Internet using existing Internet infrastructure. SOAP is about
applications communicating directly with each other over the Internet in a very rich way." [MS] “SOAP is a
protocol specification for invoking methods on servers, services, components, and objects. SOAP codifies
the existing practice of using XML and HTTP as a method invocation mechanism. The SOAP
specification mandates a small number of HTTP headers that facilitate firewall/proxy filtering. The SOAP
specification also mandates an XML vocabulary that is used for representing method parameters, return
values, and exceptions." [DevelopMentor]. Taken from the XML Cover Pages xxxviii. The current SOAP 1.1
specificationxxxix is a W3C Note; SOAP 1.2xl is going through the W3C consensus processxli and was
published as a first working draft in July 2001.

SQL - Structured Query Language - A language for querying, writing to, and constructing relational
databases. Many versions of SQL exist; meaning that an SQL query that works for one database will not
necessarily work against another.

SDE – Standard Data Element as defined by the DOD 8320 series and used in the DDDS.

Stylesheet - A generic term that may refer to an XSL Stylesheet or a CSS. Often the term used to
reference XSL Stylesheets implicitly, however this is not technically correct as a stylesheet may by CSS
conformant, and having nothing the do with XML whatsoever. The primary function of a stylesheet is to
render XML to a presentation format. However, XSLT can transform one XML instance into another
different instance. Application of a stylesheet by an XSL processor to an XML document for the purpose
of creating another XML document (i.e. an XML to XML transformation) does not render a presentation
format at all. More simply, applying a stylesheet to XML doesn’t imply that the output is ready for viewing;
you have to understand what the stylesheet is doing.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix G

G - 6

Substitution Group – In the context of XML Schemas, a substitution group may be declared for an
element to define a synonymous group of tag names. A top-level element is declared, then other
elements are declared with an attribute indicating they belong in the substitution group of the top element.
Different elements do not necessarily have to have the same structures – used in this fashion they are
functionally similar to a group of optional elements where only one may be chosen. The top-level element
may be declared abstract, in this case the top level element may not be used but can serve as a generic
model for non-abstract elements in the substitution group. This is similar and somewhat redundant of the
functionality provided by XML Schema types.

Throw (an error) – A terms adopted from the Java language to indicate that a processing error has
occurred. Conceptually, Java “throws” the error to an error-handling object, which “catches” it, or may
“throw” it to another object, and so on.

UID – Unique Identifier. A generic term used to indicate that an object or item has a string or number that
identifies it uniquely within a specific context or environment. Universally Unique Identifiers (UUIDs) and
Globally Unique Identifiers (GUIDs) are special identifiers that are guaranteed universal uniqueness via
an identifier assignment algorithm.

UML - The Unified Modeling Languagexlii defines a standard language and graphical notation for creating
models of business and technical systems. UML is not only for programmers, it defines several model
types that span a range from functional requirements definition and activity work-flow (business process)
models to logical and physical software design and deployment. The UML has over the last few years
become the lingua franca for business and technical stakeholders to communicate and develop IT
systems. Through the UMM, UML has been adopted by UN/CEFACT and ebXML as the modeling
language of choice.

UMM - The Unified Modeling Methodology xliii is a product of UN/CEFACT, and describes the CEFACT
recommended methodology for modeling business processes to support the development of the next
generation EDI. It is based upon the Rational Unified Processxliv , and uses the UML as it modeling
language. In the UMM, business process are modeled by deconstructing them into a series of document
exchanges which are orchestrated to form a complex process. The ebXML Technical Report, Business
Process and Business Information Analysis Overview v1.0 further develops the UMM. The ebXML
Business Process Specification Schema v1.01 (BPSS) provides a schema in the form of a DTD for
specifying business processes as an XML instance, it may be developed as part of a UMM modeling
process.

URL / URI / URN – Uniform Resource Locators, Uniform Resource Indicators, and Uniform Resource
Names are different, related methods of uniformly referencing resources across networked environments.
A recently release W3C Note explains the differencexlv .

Valid (XML) - An XML instance (document) whose structure has been verified in conformance to a
schema by a validating parser. Note that an XML instance must be well-formed to be valid, but it does not
need to be valid to be well-formed. This is because a parser will always check well-formedness
constraints but will only checking validation constraints if it is a validating parser.

Validating Parser - An XML parser that enforces validity constraints by comparing the structure and
syntax of an XML instance to the rules specified in a schema. Not all parsers are validating parsers, and
validating parsers enforce validation according to specific schema languages. Most validating parsers are
capable of enforcing validity against a DTD, while some can enforce validation rules described in other
schema languages.

W3C - The World Wide Web Consortiumxlvi was created in October 1994 to lead the World Wide Web to
its full potential by developing common protocols that promote its evolution and ensure its interoperability.
W3C has more than 500 Member organizationsxlvii from around the world and has earned international
recognition for its contributions to the growth of the Web.

W3C Recommendation - A work that represents consensus xlviii within W3C and has the Director's stamp
of approval. W3C considers that the ideas or technology specified by a Recommendation are appropriate
for widespread deployment and promote W3C's mission.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix G

G - 7

W3C Note – A W3C Note is a publication of a member idea. Notes do not go through the consensus
process, they represent the ideas of a single (group of) W3C member(s).

(W3C) XML Schema - A schema written in according the W3C XML Schema language. [From the W3C
Schemaxlix page] "XML Schemas express shared vocabularies and allow machines to carry out rules
made by people. They provide a means for defining the structure, content and semantics of XML
documents. The XML Activity Statement l explains the W3C's work on this topic in more detail." The W3C
XML Schema language is described in three recommendations: XML Schema Part 0: Primer li, XML
Schema Part 1: Structures lii, and XML Schema Part 2: Datatypes liii. In the DONXML Developers Guidance
(this document), the term XML Schema will be used in reference to a W3C XML Schema language
compliant schema.

Web-service – A generic term used to refer to the use of Hypertext Transfer Protocol (HTTP) and XML to
exchange information. Frequently the term implies the use of SOAP to exchange information between
applications, vice application to human, which is done in HTML.

Well-formed (XML) - An XML instance that meets well-formedness constraints defined by the XML 1.0
specification. Well-formedness constraints are precise syntactic rules for markup of data. As an example,
the XML specification stipulates every open tag must have a corresponding and properly nested closing
tag. A document must be well-formed in order to be considered XML. A parser processing a document
will throw a fatal error if it detects a well-formedness violation.

Well-formed HTML - HTML that meets the well-formedness constrains of XML 1.0. Well-formed HTML is
not the same as XHTML.

XHTML - Extensible HyperText Markup Languageliv .

XML - [From the XML 1.0 specification] "Extensible Markup Language, abbreviated XML, describes a
class of data objects called XML documents and partially describes the behavior of computer programs
which process them. XML is an application profile or restricted form of SGML. By construction, XML
documents are conforming SGML documents." The XML 1.0 specification is a W3C Recommendation. In
XML, metadata is described by an extensible set of tags; the tags are said to be extensible, because
unlike HTML, where the markup tags are fixed, developers are given the flexibility to define their own tags
or reuse tags defined by another party. This flexibility is both the key to XML's power and the single
biggest stumbling point to achieving interoperability when making use of XML.

(XML) API - Application Programming Interface. In the context of XML, parsers expose their data to a
calling application via an interface. An interface is a specification (which the parser conforms to) that
describes how the parser will pass data from an XML document to a calling application. The two accepted
XML API's are DOM and SAX.

(XML) Attributes – In the context of XML, attributes provide a mechanism for attaching additional
metadata to an XML element. For example, <element attribute=”value”/>. An XML attribute is not
equivalent to an object or relational model attribute. Data model entity attributes may be expressed as
either XML attributes or elements. Frequently in discussions surrounding the application of XML to data
models, one party will be referring to attributes in the context of XML and another to attributes in the
context of data models, causing confusion.

XML Comments – The structure for inserting free text comments into XML. The same structure is used
for SGML and HTML comments. <!-- comment text here -->

XML Component – A generic term used to refer to XML elements, attributes, and XML Schema type
definitions.

 (XML) Document - - [Paraphrased from the XML 1.0 specification] "A data object is an XML document if
it is well-formed, as defined in the XML 1.0, specification. A well-formed XML document may in addition
be valid if it meets certain constraints" as described by a schema. Synonymous with XML instance.

(XML) Elements – The fundamental unit of information in XML. Elements are encapsulated by tags, and
may contain (among other things) attributes (declared inside the opening tag), other elements, or data.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix G

G - 8

(XML) Child Element – The hierarchical nature of XML allows elements to contain or be nested inside
other elements, forming a conceptual data tree (see DOM). Often XML elements are referenced in terms
of parent-child relationships. A child element is an element contained between the tags of a parent
element. Child elements are also referred to as descendants, while parent elements may be referred to
as ancestors.

(XML) Grammar / Vocabulary – Related terms often used synonymously to indicate a set of element
and attribute names and the structures described by a schema or set of related schemas that employ the
elements and attributes. More precisely, the term vocabulary implies a commonly defined set of elements
and attributes, while grammar refers to the composition of the vocabulary into meaningful business
documents by one or more related schemas. An XML Namespace may be used to describe a vocabulary,
while a schema may employ vocabulary from a single or multiple XML Namespaces.

(XML) Instance - Synonymous with XML Document. The term derives from object-oriented programming
where objects are considered instances of classes. Programmers write code that defines application
behavior in terms of classes of objects. In application execution, objects are instantiated (see object) from
these class definitions. XML provides an object-like way to conceptualize textual data. Essentially,
schemas are the equivalent of object classes, and XML documents are equivalent of object instances.
Hence the term XML instance is widely used, however XML document is the official term used by the
W3C.

XML Namespace – An XML Namespace is a conceptual “space” to which element and attribute names
may be assigned. An XML Namespace is declared within an XML instance by assigning a URI reference
and an optional qualification prefix to an element. The element and all its children are considered to be
“in” the XML Namespace unless specifically qualified with another Namespace’s prefix. The URI
reference does not have to an associated document physically at the URI. Within an XML Schema, the
‘targetNamespace’ attribute may be used to indicate that all elements declared within the schema are to
be treated as “in” the target Namespace. The W3C Recommendation Namespaces in XMLlv provides the
full specification for XML Namespaces. Note: COE XML Namespaces may use XML Namespaces but the
two terms are not synonymous.

(XML) Name Token – Per the XML 1.0 specification, a Name Token is “...any mixture of name
characters...” where a “name” character obey the XML name convention. A [XML] Name “...is a token
beginning with a letter or one of a few punctuation characters, and continuing with letters, digits, hyphens,
underscores, colons, or full stops, together known as name characters. Names beginning with the string
"xml", or any string which would match (('X'|'x') ('M'|'m ') ('L'|'l')), are reserved for standardization in this or
future versions of this specification.” White space characters (hex #x20, #x9, #xD, #xA) are excluded
from Name Tokens.

 (XML) Parser - A software application (module) that either reads or receives a text encoded binary
stream, decodes it, verifies the input conforms to "well-formedness" constraints of the XML 1.0
specification, (in the case of a Validating Parser) checks validity of the XML Instance against a schema if
available, and exposes the content via an API to a calling application. A parser can be a standalone
application, but it is most often a module called by a larger program (the calling application). A Parser
may also be referred to as an XML Processor.

(XML) Processor - A synonym for an XML parser.

XML Declaration – Every well-formed XML document must begin with a statement that as a minimum
declares the version of XML that the document conforms to. Example: <?xml version=”1.0”>,

XML Document Tree – Refers to the logical model of an XML document conceptualized as a data tree,
with a Root Node and branch nodes ending at data that can be thought of as the leaves. See DOM.

(XML) Root Node – The first node originating the XML Document Tree. The Root Node is not the same
as the root element.

(XML) Root Element – Refers to the XML element in which all other elements must be nested. The root
element (a physical XML construct) is a child of the logical root node of the document tree.

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix G

G - 9

(XML Schema) Type – An XML component defined by the XML Schema language. Types do not show
up in XML instances; they are used within the Schema to express relationships, and through type
inheritance, add an object-like capability to XML Schemas. Types may be simple, that is they allow
definition of simple data-type constraints on element values; or they may be complex, that is they define
structures consisting of other elements. For example a type could be defined <xsd:complexType
name=”AddressDetails” >...</xsd:complexType>, then the definitions for XML elements,
‘ShippingAddress’ and ‘MailingAddress’ could reference the previously defined generic type.

(XML) Schema Annotation – The XML Schema language allows addition of annotations to schema
components through an ‘annotation’ element (<xsd:annotation>) which must contain either a
‘documentation’ element (<xsd:documentation>) or ‘AppInfo ’ element (<xsd:appInfo>). A ‘source’
attribute may be added to either element to provide a URL reference to the source of the annotation.
Annotations provide a more sophisticated way to provide documentation and application information that
may be parsed and accessed by applications via an API.

 (XML) Tags - XML (and its parent SGML) annotate metadata through the use of tags that indicate which
text in a document are considered metadata and which is to be considered data. Tags are surrounded by
markup characters. As an example, the data '3000N' can be marked up in XML,
<latitude>3000N</latitude>. The tags are <latitude> (start tag) and </latitude> (end tag). Note: As
discussed in the XML definition presented here, developers are free to defines tags. As an example, the
data '3000N' could be alternatively marked up as, <lat>3000N</lat>, and still be well-formed. The
document schema will specify which of all possible well-formed XML instances are valid for a particular
application. An additional example is <Latitude hemisphere="N">3000</Latitude>; here the tag
contains an XML attribute to specify the hemisphere. The choice as to the attribute name and possible
values are also at the developer's discretion. Note that Parsers processing documents are sensitive to
markup tag case, therefore in the first example the tag <latitude> is not equivalent to the later example
tag, <Latitude>.

XPath – XPath is a W3C recommendation whose primary purpose is to provide a compact, non-XML
notation for identifying parts of an XML document. It operates on the abstract, logical structure of an XML
document, rather than its surface syntax by modeling an XML document as a tree of nodes. The
document tree can be navigated by applications implementing XPath. XPath is the result of an effort to
provide a common syntax and semantics for functionality shared between XSL Transformations [XSLT]
and XPointer.

XSL - The Extensible Style Sheet Language. [From the W3C XSL pagelv i] "XSL is a language for
expressing stylesheets. It consists of three parts: XSL Transformationslvii (XSLT): a language for
transforming XML documents, the XML Path Languagelviii (XPath), an expression language used by XSLT
to access or refer to parts of an XML document (XPath is also used by the XML Linkinglix specification).
The third part is XSL Formatting Objects: an XML vocabulary for specifying formatting semantics. An XSL
stylesheet specifies the presentation of a class of XML documents by describing how an instance of the
class is transformed into an XML document that uses the formatting vocabulary. For a more detailed
explanation of how XSL works, see the What Is XSLlx page.” As of 16 October 2001, XSLlxi is a W3C final
recommendation.

XSL Processor - The software (module) executing XSL transformation and formatting instructions. At a
minimum, consists of an XSLT conformant transformation component, and an optional XSL-FO
processing component. A word of caution: XSL processor vendors often add "extensions" to the XSLT
specification. While often extremely useful, stylesheets written using these extensions will not perform
correctly in another XSLT compliant processor, eliminating their cross-platform compatibility.

XSL-FO - XSL Formatting Objects: an XML vocabulary for specifying formatting semantics. XSL-FO
works in conjunction with XSLT to markup transformed XML with formatting object tags. Applications
capable of processing these tags render the XML to another application's presentation environment. For
example, Apache's Formatting Object Processor (FOP) can transform XML to Adobe PDF format.
Another example is jfor, an open-source formatting object processor for transforming XML to Rich Text
Format (RTF).

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix G

G - 10

XSLT - XSL Transformations lxii , a W3C recommendation [from the XSLT recommendation] "…defines the
syntax and semantics … for transforming XML documents into other XML documents" [including well-
formed HTML]." XSLT is the only W3C recommended XML syntax for transforming XML documents.
Developers writing stylesheets should ensure they are strictly conformant to this specification to ensure
reusability. Conformance testing through the use of several XSLT compliant XSL processors is
recommended.

URL References

i Navy XML Quick Place, http://quickplace.hq.navy.mil/navyxml
ii Task Force Web, http://www.tfw.navy.mil/
iii RFC 2119, http://www.ietf.org/rfc/rfc2119.txt
iv XML Schema Tutorial, http://www.xfront.com/xml-schema.html
v XFront.com, http://www.xfront.com/
v i Schema Best Practices, http://www.xfront.com/BestPracticesHomepage.html
vii eBTWG, http://www.ebtwg.org/
viii eBTWG UML2XML, http://www.ebtwg.org/projects/u2xdr.html
ix COE XML Registry, http://diides.ncr.disa.mil/xmlreg/user/index.cfm
x ebXML Specifications and Technical Reports, http://www.ebxml.org/specs/
xi COE Data Emporium, http://diides.ncr.disa.mil/shade/refdatasets.cfm
xii MIL-STD-6040 (USMTF), http://www-usmtf.itsi.disa.mil/std_6040.html
xiii OASIS, http://www.oasis-open.org/
xiv UN/CEFACT, http://www.unece.org/cefact
xv eBTWG, http://www.ebtwg.org/
xv i ebXML Core Component Technical Reports, http://www.ebxml.org/specs/#technical_reports
xvii ebXML Technical Architecture, http://www.ebxml.org/specs/ebTA.pdf
xviii ebXML Technical Report, Naming Convention for Core Components

http://www.ebxml.org/specs/ebCCNAM.pdf
xix W3C Technical Recommendations, http://www.w3.org/TR/
xx Business Process and Business Information Analysis Overview v1.0,

http://www.ebxml.org/specs/bpOVER.pdf
xxi ebXML Business Process Specification DTD, http://www.ebxml.org/specs/ebBPSS.dtd
xxii ebXML Business Process Specification XML Schema (CR), http://www.ebxml.org/specs/ebBPSS.xsd
xxiii COE XML Registry, http://diides.ncr.disa.mil/xmlreg/user/index.cfm
xxiv COE XML Namespace Managers, http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix G

G - 11

xxv COE XML Registration Information, http://diides.ncr.disa.mil/xmlreg/user/registry_info.cfm#submit
xxvi The Object Management Group, http://www.omg.org/
xxvii eBTWG Core Component Project, http://www.ebtwg.org/projects/core.html
xxviii DDDS, http://www-datadmn.itsi.disa.mil/ddds/ddds40.html
xxix DOD 8320, http://www-datadmn.itsi.disa.mil/guidance.html
xxx W3C DOM, http://www.w3.org/DOM/
xxxi HTML, http://www.w3.org/MarkUp/
xxxii OMG IDL, http://www.omg.org/gettingstarted/omg_idl.htm
xxxiii ISO Store, http://www.iso.ch/iso/en/prods-services/ISOstore/store.htm
xxxiv XML 1.0, http://www.w3.org/TR/2000/REC-xml-20001006
xxxv Namespaces in XML, http://www.w3.org/TR/1999/REC-xml-names-19990114/
xxxvi SAX, http://www.megginson.com/SAX/
xxxvii ISO 8879 (SGML), http://www.w3.org/TR/2000/#ISO8879
xxxviii XML Cover Pages - SOAP, http://xml.coverpages.org/soap.html
xxxix SOAP 1.1, http://www.w3.org/TR/2000/NOTE -SOAP-20000508/
xl SOAP 1.2, http://www.w3.org/TR/2001/WD-soap12-20010709/
xli W3C Process, http://www.w3.org/Consortium/Process-20010719/submission
xlii UML, http://www.rational.com/uml/index.jsp
xliii Unified Modeling Methodology, http://www.gefeg.com/tmwg/tm090.pdf
xliv Rational Unified Process, http://www.rational.com/products/rup/index.jsp
xlv W3C Note, URI/URL/URN Clarification, http://www.w3.org/TR/2001/NOTE -uri-clarification-20010921/
xlvi W3C, http://www.w3.org/
xlvii W3C Members, http://www.w3.org/Consortium/#membership
xlviii W3C Consensus Processes, http://www.w3.org/Consortium/Process-20010719/submission
xlix W3C Schema page, http://www.w3.org/XML/Schema
l W3C Activity Statement, http://www.w3.org/XML/Activity.html
li XML Schemas: Part 0, http://www.w3.org/TR/xmlschema-0/
lii XML Schemas: Part 1, http://www.w3.org/TR/xmlschema-1/
liii XML Schemas: Part 2, http://www.w3.org/TR/xmlschema-2/
liv XHTML, http://www.w3.org/MarkUp/#xhtml1
lv Namespaces in XML, http://www.w3.org/TR/1999/REC-xml-names-19990114/
lv i W3C XSL Page, http://www.w3.org/Style/XSL/
lvii XSL Transformations, http://www.w3.org/TR/xslt
lviii XPath, http://www.w3.org/TR/xpath
lix XLink, http://www.w3.org/TR/xlink/
lx What is XSL, http://www.w3.org/Style/XSL/WhatIsXSL.html

DONXML TechTeam

Initial XML Developer's Guide - 29 October 2001 Appendix G

G - 12

lxi XSL Final Recommendation, http://www.w3.org/TR/2001/REC-xsl-20011015/
lxii XSLT, http://www.w3.org/TR/xslt

